ELECTRIC CYLINDERS

ELECTRIC CYLINDER TECHNICAL INTRODUCTION

366-373

- Glossary and Technical Data 366-371
- Application Example 372
- Application Data Form 373

CYLINDER ACCESSORIES 375-383

- In-Line Encoder 375
- Motor Reference 376
- Brake Motor Wiring 377
- Right Angle Reducer 378
- ILA Motor Mounts 379
- Rotary Limit Switch 380-381
- Rod Type Limit Switch 382
- Clevis and Pivot Pin 383

DD, RAD AND ILA CYLINDERS 384-407

- Electric Cylinder Summary:
DD, RAD and ILA
- Cylinder Characteristics Defined 386-387
- Reference Number System: DD \& RAD 389
- DD and RAD Cylinders:
DD-5 to RAD-200
- Reference Number System:

ILA Inline Cylinders
402

- ILA Inline Cylinders: ILA-5 to ILA-200

403-407

ACTIONJACTM CYLINDERS

ELECTRIC CYLINDER TECHNICAL INTRODUCTION
ActionJacTM Electric Cylinders are ruggedly designed and produced in standard models with thrust capacities from 500 lbs . to 40,000 lbs. Electric Cylinders are intended for use in industrial environments and feature ground and hard chrome plated actuator tubes with industrial enamel paint on exterior surfaces. Epoxy paint available on request. Electric Cylinders can be supplied for outdoor applications.

These cylinders may be used individually or in multiple arrangements. Each ActionJac™ Electric Cylinder is built to specification.

DD WORM GEAR ELECTRIC CYLINDERS

DD or "Direct Drive" worm gear driven Electric Cylinders incorporate an alloy steel worm which drives a high strength bronze worm gear (drive sleeve). The worm shaft is supported on anti-friction tapered roller bearings with external
seals provided to prevent loss of lubrication (sealed radial ball bearings on the Series 5 and Series 10 units). The drive sleeve is supported on anti-friction tapered roller or ball thrust bearings. The jack housing is made of ductile iron and proportioned to support the rated capacity of the unit.

In operation, the drive sleeve rotates the lift shaft causing the actuator tube to extend and retract from the housing tube. Actuator tube must be secured to prevent rotation.

Motors can be mounted to DD Electric Cylinders by using available standard motor mounts. For use in multiple cylinder arrangements, DD Electric Cylinders can be supplied without motor mounts.

The DD Electric Cylinders are available in Acme Screw or Ball Screw versions and have a variety of worm gear ratios resulting in a wide range of speeds and thrust capacities. (SEE FIG. 1)

RAD WORM GEAR

 ELECTRIC CYLINDERSRAD worm gear driven Electric Cylinders incorporate the features of the DD with a second stage of gear reduction. This secondary worm gear reduction of the RAD Electric Cylinders provides higher thrust at lower speeds. The reducer and motor can be mounted in eight possible positions for maximum flexibility.

RAD Electric Cylinders are available in Acme Screw or Ball Screw versions. (SEE FIG. 1)

ILA ELECTRIC CYLINDER

The ILA ActionJac™ In-Line Electric Cylinders are designed to have a motor or gear reducer directly coupled to the lift shaft. This provides for fast, precise operation and/or higher duty cycles.

ILA Electric Cylinders feature standard trunnion pin mounting and are easily adapted for use with servo motors and planetary gear reducers. (SEE FIG. 1)

In-line Electric Cylinders are Ball Screw actuated. Configurations are available with keyed and un-keyed actuator tubes.

ACCESSORIES

Accessories such as motors, motor mounts, encoders, hand wheels, counters, couplings, miter gear boxes, boots, limit switches, clevises, clevis pins and clevis brackets are available. (SEE FIG. 2)

NOTE: Units are not to be used for personnel support or movement.

GLOSSARY \& TERMS

BACKLASH

Backlash (lash) is the relative axial movement between a screw and nut without rotation of the screw or nut. Backlash in cylinders occurs wherever reversible load conditions exist. Backlash is less than .015" for all but the largest cylinder models.

Ball Screw Cylinders can be factory adjusted to reduce backlash at the lift shaft by selecting bearing ball size in the ball nut. This selective fit technique can be used to achieve a minimal lash between the ball nut and ball screw of .003" to .005". Precision ball screws with preloaded nuts can be supplied when less than .003" backlash is required.

REACTION TORQUE

When an electric cylinder is used to move a load, the actuator tube must be secured to prevent rotation. The reaction torque required to prevent rotation is a function of the screw lead and the load applied on the cylinder. See product specification sheets for rod reaction torque.

Prior to installation, the actuator tube can rotate freely in or out of the cylinder without movement of the input worm. This ability to rotate
aids installation but prevents the optional rotary limit switch from being factory preset for end of travel positions.

Rod-Type Limit Switches prevent tube from freely rotating but are not intended to absorb rod reaction torque.

TRAVEL LENGTH

Electric Cylinders are not pre-assembled or stocked with standard length screws. Each cylinder is made to order based on travel length.

Cylinders can be built with non-standard lead screws to change the cylinder operating speed or with ground or preloaded screws if required by the application. Contact Nook Industries for availability of special units.

LEAD ACCURACY

Lead accuracy is the difference between the actual distance traveled versus the theoretical distance traveled based on lead. For example: Consider a lift shaft with a .5" lead and +/-. 004"/ foot lead accuracy. If the shaft is rotated 24 times, the distance the nut moves is 11.996 to 12.004 inches.

The rolled thread screws, as employed in ActionJac ${ }^{\text {TM }}$ products, are held within +/-.004" per foot lead error.

INPUT TORQUE

The input torque is the rotary force required at the input of the cylinder to generate an output force at the actuator tube. The torque necessary to raise one pound is shown in charts on pages 384-385. This number multiplied by the load is the required input torque.

Due to static friction, starting or "breakaway" torque can be as much as two to three times running torque. If the load is moved horizontally, the force required to move the load will be lessened in proportion to the coefficient of friction of the surface along which the load is moved. In addition, the force needed to start, stop and hold the load (inertia loading) is provided by the cylinder. Cylinder sizing should consider all these forces.

If an application calls for several cylinders to be driven together in series, input torque values should be limited to three times the rated value of the first cylinder. For multiple high lead (HL, SL) ball screw cylinders contact Nook Industries for allowable input torque values. Multiple cylinders driven in a series may require operation at reduced load.

INPUT SPEED

DD and RAD ActionJac ${ }^{\text {TM }}$ Electric Cylinder models are rated at 1725
rpm input. If provided without a motor, cylinders may be operated up to 3000 rpm provided horsepower and temperature ratings are not exceeded. Contact Nook Industries engineers if higher speeds are required.

When using variable speed motors, use the Input Turns Per Inch Of Travel information from the Electric Cylinder Design Data table to determine actual travel speed. Input speed (rpm) divided by input turns per inch of travel produces the travel speed in inches per minute. NOTE: That maximum horsepower values should not be exceeded.

DUTY CYCLE

Duty cycle is the ratio of run time to total cycle time. Some of the electrical energy input to an electric cylinder is converted into heat. The duty cycle is limited by the ability of the electric cylinder to dissipate this heat. An increase in temperature can affect the properties of some components resulting in accelerated wear, damage and possible unexpected failure.

Ratings for DD and RAD Electric Cylinders are based on intermittent operation. The approximate allowable duty cycles for DD and RAD worm gear cylinders are:

$$
\begin{aligned}
& \text { Ball Screw versions }=35 \% \\
& \text { Acme Screw versions }=25 \%
\end{aligned}
$$

Housing temperature should be monitored and kept below $200^{\circ} \mathrm{F}$ maximum. Continuous or heavyduty operation is possible by de-rating the cylinder capacity, external cooling of the unit or through the use of a recirculating lubrication system.

ILA and ILAK cylinders are direct drives with no internal gears. Duty cycle for these cylinders is a function of the motor or add-on gear box.

SELF-LOCKING AND BRAKES

Self-locking occurs when system efficiencies are low enough that the force on the actuator lifting tube cannot cause the drive system to reverse direction. Actionjac Electric Cylinders that utilize acme screws and have ratios of 20:1 or greater are self-locking and, in the absence of vibration, will hold loads without backdriving. All other models require a motor brake to prevent backdriving.

Holding torque is the amount of input torque required to restrain the load once stopped. The standard brake torque shown in the product specification sheets for DD and RAD Cylinders will stop low inertia loads within the stopping distances shown. Larger brakes may be required to stop high inertial loads or stop travel in shorter distances. Contact Nook Industries, for recommendations.

TEMPERATURE

All Actionjac ${ }^{\text {TM }}$ Electric Cylinders are suitable for operation within the specified limits, provided that the housing temperature is not lower than $-20^{\circ} \mathrm{F}$ or higher than $+200^{\circ} \mathrm{F}$. Factory supplied grease in standard units will operate in this range. For higher or lower operating temperature ranges contact Nook Industries, for recommendations.

END-OF-TRAVEL STOPS

Travel stops are not standard. A limit switch and a brake should be used to stop the motor. Mechanical stops can cause damage to the cylinders because most electric motors will deliver stall torques much higher than their rated torques and motor inertia can cause severe shock loads. For hand operation, mechanical stops can be provided.

DESIGN CONSIDERATIONS

BALL SCREW VS.
ACME SCREW CYLINDER
The decision to use a Ball Screw or an Acme Screw Cylinder is based on the application. For many applications, a ball screw model is the best choice. Ball screw cylinders are more efficient and therefore require less power than an acme screw cylinder in the same application.

For low duty cycle applications, for hand-operated applications, or if backdriving is not acceptable consider an acme screw cylinder.

Ball Screw Cylinders are preferred for:

- Long, predictable life
- High duty cycles
- Oscillating motion

Acme cylinder is preferred for:

- Resistance to backdriving
- Vibration environments
- High static loads

LOAD CAPACITY

All anticipated loads should be within the rated capacity of the cylinder. Loads on the cylinder in most applications include: static loads, dynamic or moving loads, cutting forces or other reaction forces and acceleration/ deceleration loads.

For shock loads, the peak load must not exceed the rated capacity of the cylinder, and an appropriate design factor should be applied commensurate with the severity of the shock.

For accidental overloads not anticipated in the design of the system, cylinders can sustain without damage the following
overload conditions: 10% for dynamic loads, 30\% for static loads.

For multiple cylinder systems, load distribution should be considered. System stiffness, center of gravity, drive shaft windup and lead variation in the lift shafts may result in unequal load distribution.

HORSEPOWER RATINGS

Standard DD and RAD Electric Cylinder Models are supplied with electric brake-motors sized for the load and speed rating of the cylinder.

The allowable duty cycles for DD and RAD worm gear cylinders being used at full rated load are:

Ball Screw Cylinders $=35 \%$
Acme Screw Cylinders = 25\%
If an Electric Cylinder is applied at less than rated capacity, higher duty cycles may be possible. The best way to determine allowable duty cycle is to measure the cylinder gear housing temperature. The temperature of the housing near the worm must not exceed $200^{\circ} \mathrm{F}$.

For Electric Cylinders supplied without brakemotors, use the information in the "Electric Cylinder Design Data" chart for motor sizing.

The horsepower is calculated by using the following formula:

The "Torque to raise one pound" value is particular to each cylinder and can be obtained from the "Electric Cylinder Design Data" chart on pages 384-385.

Maximum horsepower ratings are based on intermittent operation.

To determine whether performance is within horsepower and duty cycle limits, measure the cylinder temperature. The temperature of the housing near the worm (or at the thrust bearing mounting block for ILA cylinders) must not exceed $200^{\circ} \mathrm{F}$.

Do not exceed the maximum allowable input horsepower for a cylinder.

COLUMN STRENGTH

Electric Cylinder capacity may be limited by its column strength. Column strength is the ability of the cylinder to hold compressive loads without buckling. With longer screw lengths, column strength can be substantially lower than nominal cylinder capacity. When the lift screw is in tension only, stroke is limited by available screw and/or tube material or by screw critical speed. If there is any possibility for the cylinder to go into compression, the application should be checked for sufficient column strength.

The charts on each cylinder specification page are used to determine the cylinder size in applications where the lift screw is loaded in compression.

The charts assume proper cylinder alignment with no bending loads present. Effects from side loading are not included in this chart. Also, cylinders operating horizontally with long lift screws can have significant bending from the weight of the screw and tubes. Consult Nook Industries, if side loads are anticipated.

CYLINDER SIZING DATA

Cylinders are limited by two constraints: load capacity and horsepower. The load capacity of the cylinder is limited by the physical constraints of its components (drive sleeve, lift shaft, bearings, etc.). The horsepower limit of the cylinder is a result of the ability to dissipate the heat generated from the inefficiencies of its components.

In order to test for these constraints, application information must be collected. The data required to size a cylinder includes:

1) Total Load - The total load includes static loads, dynamic loads and inertia loads from acceleration and deceleration. Also consider reaction forces received from the load such as drilling or cutting forces when using a cylinder to move a machine tool.
2) Number of Cylinders - The number of cylinders used depends on physical size and design of the equipment. Stiffness of the equipment structure and guide system will determine the appropriate number of cylinders required. Fewer cylinders are easier to drive, align and synchronize. For multiple-cylinder arrangements, do not assume equal loading. Calculations should be based upon "worst case" unequal loading.
3) Travel Rate - Establishing a travel rate allows for a quick cylinder selection and will be used to evaluate critical speed and horsepower limits. The desired rate should include time for acceleration/deceleration.
4) Travel - Travel is the total distance the cylinder extends. This is the number that is used to calculate maximum compressive load. For cylinders with nonstandard retracted lengths include
the additional length in the compressive load evaluation.
5) Duty Cycle - The duty cycle is the ratio of run time to the total cycle time.
6) Type of Guidance - Every linear motion system needs something to move the load and something to guide the load. The degree of guidance (stiffness, accuracy, etc.) is based on application requirements.

CYLINDER SELECTION

Once the cylinder sizing information is collected, a preliminary cylinder selection can be made and verified.

1) Select a standard cylinder -

 Use the DD and RAD Model Quick Reference Chart page 374 to find a unit which matches the desired force and speed. Choose between a ball screw or acme screw model based on duty cycle (model suffixes which begin with "A" are acme models).2) Travel Length - When a unit is chosen, go to the product specification page for that model. Check that the desired travel length does not exceed column strength and maximum travel limits. A larger capacity cylinder may be required in order to stay within these limits.
3) Reference Number - Use the information on page 389 to specify a complete Electric Cylinder Reference Number.

If the cylinder is to be used with a motor other than those listed in the catalog, if multiple cylinders are used or if the cylinder is manually operated, go to the Electric Cylinder Design Data on pages 384-385.

1) Select a cylinder - Choose a model whose basic capacity matches or exceeds the expected
load. Make certain the dynamic and static loads do not exceed the cylinder capacity. In multiple cylinder applications, check the distribution of the load for potential uneven loading on the cylinders.
2) Speed - Use the "turns for one inch of travel" from the chart to determine the input speed required. If travel rate and motor speed are known, divide the motor speed (rpm) by the travel rate (inches per minute) to determine the "turns for one inch of travel."
3) Motor Horsepower - Calculate the horsepower required from the load, speed and "torque to raise one pound value" from the chart. Use the horsepower calculation on page 369.

If using the cylinders in multiple cylinder systems, check the total horsepower. Remember that additional gearboxes and couplings used to distribute power to the cylinders are not 100\% efficient.

If the horsepower required exceeds the maximum value for the cylinder selected, several solutions are possible.

- Use a larger cylinder model to increase the maximum allowable horsepower
- Use a Ball Screw Cylinder to reduce the power required to do the same work
- Operate at a lower input speed
- Use a RAD cylinder to bring the power requirement within acceptable limits

Upon selecting a motor and brake, verify that the brake has sufficient torque to both hold the load and stop the load.

CAUTION: Cylinders with high lead ball screws (HL and SL) may
require larger brakes to stop the load. An appropriately sized brake will insure against excessive "drift",
4) Column Strength - If it is possible for the cylinder to be loaded in compression, check for column strength. Consider cases where a unit normally loaded in tension can be compressively loaded if it runs into an obstruction. Also check horizontal applications for compressive loading due to acceleration or deceleration.
5) Cycle Time - If using a worm gear style Electric Cylinder, make sure cycle time does not exceed the allowable duty cycles.
6) Life - For Ball Screw Cylinders, check life expectancy against the life charts.
7) Reference Number - Use the information on page 389 to specify a complete Electric Cylinder Reference Number.

INSTALLATION

The alignment of the cylinders directly affects their service life. Cylinders must be properly aligned in all planes so the actuator tube can move in and out without evidence of binding.

Since the majority of cylinder applications use the cylinders with clevis or trunnion mounts, simply align the clevises and install the cylinder.

Set limit switches before operating. Allow for drift when setting the position. The actuator tube can move (rotate) until the unit is installed. Turn the actuator tube in or out to get the cylinder to a known position before installation to prevent over-travel.

MAINTENANCE

ActionJac ${ }^{\text {™ }}$ Electric Cylinders require minimum maintenance. In addition to maintaining lubrication
levels in the gearbox and tubes, the following items should be checked:

- The actuator tube should be kept free of dirt. If possible, the actuator should be returned to the retracted position when not in use.
- For acme cylinders, lash between the lift shaft and travel nut greater than $1 / 4$ the screw pitch indicates the need for replacement of the cylinder lift shaft components. Refer to the acme section for the specifications on the nut used.
- For machine screw or ball screw worm gear Electric Cylinders, check for excessive backlash between the worm and worm gear. Lash in excess of 30° for ratios 5:1 to 8:1 and 60° for ratios 20:1 and 24:1 indicates the need to replace the worm and worm gear.

LUBRICATION

Actionjac ${ }^{\text {TM }}$ Electric Cylinders require lubrication to operate efficiently and with maximum life. Standard lubrication is NLGI \#1 grease. If operating conditions exceed $-20^{\circ} \mathrm{F}$ to $200^{\circ} \mathrm{F}$, contact Nook Industries, for alternative lubricants.

The cylinder gear boxes are shipped pre-greased unless otherwise specified. Before operating any unit, check the lubricant level. All cylinder housings are furnished with a grease fitting. Most have a pipe plug opposite the grease fitting. When adding grease to the housing, remove the pipe plug and fill the unit until grease exits the pipe plug opening. Overfilling the cylinder may result in grease leakage from the seals.

In normal operation, cylinder lubricant levels should be checked once per month. Application conditions may dictate a more or
less frequent lubrication cycle. In extreme conditions, automatic lubrication may be desired.

Lubricants containing additives such as molydisulfide or graphite should not be used.

The lift shafts (ball and acme screws) inside the Electric Cylinder actuator tube receive lubrication through the fittings on the outside of the housing tube. Lubrication added to the housing tube can pass to the screw regardless of actuator tube position, but there is a guide at the bottom outside of the actuator tube which runs along the inside of the housing tube. The best way to lubricate this section of the cylinder is to add some lubricant when the cylinder is fully retracted and additional lubricant when the cylinder is extended beyond where the guide is past the lube port (see cylinder cutaway view on page 367).

Application \#1 - HVAC DUCT VALVE

An HVAC 6' $\times 6^{\prime}$ duct valve is located 30 feet above a manufacturing process facility floor. The baffle needs to be adjusted periodically to maintain proper airflow through the building. The loads, duty cycle and other operation details have been identified. The concern is with the amount of dust and particulate that will accumulate on the actuator due to the fact that it is located directly above foam manufacturing equipment.

SPECIFICATIONS:

- Maximum force to open and close the valve under maximum airflow is $2,000 \mathrm{lbs}$.
- Cylinder will be in compression
- Maximum speed is 32 inches per minute
- Actuation cycle: 2 times per day; 365 days per year
- Desired design life is twenty years
- Mechanism must be mounted overhead
- Limit Switches needed
- Maximum stroke is 18 inches

ANALYSIS:

There is a specific life requirement so a ball screw actuator is needed. As shown on the Series DD-25 product reference page 366, using the DD-2512-HD with a $1 / 2 \mathrm{hp}$ brake motor will provide a travel rate of 36 "/min and give 4.1 million inches of life at 2000 lbs . Additionally, the charts show that this application is within the column load strength of the DD-2512-HD. The door swings through an arc so a double clevis style will be needed. Due to the environment concerns an enclosed Rotary Limit Switch should be used instead of a Rod type Limit Switch.

Application \#2 - DISTRIBUTION CONVEYOR

A warehouse conveyor system distributes filler material across a 48 inch wide packaging line. One end of the conveyor is hinged to a loading station, the other end must move across the conveyor.

SPECIFICATIONS:

- The maximum load from the conveyor with material is 1,100 pounds
- A servo drive will be used to control the actuator
- The conveyor will move 480 times an hour, 16 hours a day, 350 days per year
- Life expectancy is 5 years
- Stroke length is 24 inches maximum
- Minimum Travel Rate is 24 inches in 3 seconds

ANALYSIS:

An In-Line cylinder will be used because of the frequent cycle requirement. With a travel rate of 480 inches per min ((24 inches / 3 seconds) * 60 seconds) and a life expectancy of 15 million inches, an ILA-10-HL is selected. The application would require a servomotor that can produce 96.8 inch-lbs of torque (0.088 inch-lbs * 1,100 lbs) at $960 \mathrm{rpm}(480$ inches per min / . 500 Lead).

SELECTION:

ILA-10-HL / 24 / M

M- Modified motor adapter to mount servomotor.

SELECTION:

DD-2512-HD / 05BT -1 / 2CA - 4E / CC / 18 / S

LOAD

Total Maximum Thrust Load on Cylinder(s): \qquad pounds force

Maximum Thrust Load on any one Cylinder: \qquad pounds force (Note: load can rarely be assumed to be equal on all cylinders)

TRAVEL
Inches: \qquad Orientation:

- vertical
horizontal \square other (arc, diagonal, etc)

TRAVEL RATE

Optimal Speed: \qquad inches/minute

Minimum Acceptable Speed: \qquad inches/minute Maximum Acceptable Speed: \qquad inches/minute

DUTY CYCLE

Distance per cycle \qquad inches (One cycle = extend and retract)

Number of cycles per time period: \qquad cycles per

Maximum Distance Traveled in any Year: \qquad inches

Life Desired: \qquad (Important: If load varies significantly, please explain below.)

OPERATION

Cylinders are Loaded in:
Tension

- Compression
- Both

Driven Motor type: Servo ac Induction motor \square Other Type of motor (describe)

APPLICATION

Please briefly describe the application. State type of machine, function of jack(s), load guidance system and environment (shock or impact loading, vibration, temperature extremes, corrosive, dirty, or other extreme operating conditions). Attach any sketches and other relevant information. Also, if a tentative selection has been made, please give the reference number or model and description below.

STANDARD DD \& RAD MODELS WITH MOTORS

CYLINDER MODEL NUMBER					DYNAMIC CAPACITY (lbf.)	TRAVEL RATE IN/MIN. @ 1725 RPM	PAGE NUMBER
DD-105-HL / 05XX	750	172	391				
DD-1020-HL / 02XX	800	43	391				
DD-105-A5 / 02XX	850	69	391				
DD-1020-A5 / 02XX	900	17	391				
DD-256-HL / 10XX	900	287	392				
DD-506-SL / 20XX	950	539	392				
DD-506-A3 / 10XX	1,000	108	396				
DD-1008-SL / 20XX	1,150	404	398				
DD-3024-A4 / 05XX	1,200	18	394				
DD-2524-HD / 03XX	1,500	18	392				
DD-2512-HL / 10XX	1,500	144	392				
DD-256-A2 / 15XX	1,725	144	392				
DD-256-ML / 10XX	1,800	144	392				
DD-256-HL / 20XX	1,800	288	392				
DD-2524-A4 / 05XX	1,880	18	392				
DD-5024-A3 / 07XX	1,900	27	396				
DD-105-HD / 05XX	1,900	69	391				
DD-506-A2 / 20XX	1,900	144	396				
DD-1020-HD / 02XX	2,000	17	391				
DD-2512-HD / 05XX	2,000	36	392				
DD-10024-A2 / 15XX	2,000	36	398				
DD-1008-A4 / 20XX	2,000	54	398				
DD-256-HD / 07XX	2,000	72	392				
DD-1008-A2 / 20XX	2,000	108	398				
DD-506-HL / 20XX	2,000	288	396				
DD-306-A4 / 15XX	2,100	72	394				
DD-1008-HL / 20XX	2,175	216	398				
DD-3012-A4 / 10XX	2,200	36	394				
DD-506-A3 / 20XX	2,200	108	396				
DD-256-A4 / 15XX	2,280	72	392				
DD-2512-A4 / 10XX	2,500	36	392				
DD-20024-A2 / 20XX	2,500	36	400				
DD-3012-HD / 07XX	2,500	60	394				
DD-306-HD / 15XX	2,500	120	394				
DD-506-HL / 30XX	2,500	287	396				
RAD-5066-A3 / 10XX	2,700	18	397				
DD-3024-HD / 05XX	2,700	30	394				
DD-10024-HL / 15XX	2,700	72	398				
DD-506-A3 / 30XX	2,900	108	396				
DD-508-A4 / 20XX	3,000	54	396				
DD-1008-A2 / 30XX	3,000	108	398				
DD-306-HD / 15XX	3,275	120	394				
DD-5024-HD / 07XX	3,400	34	396				
DD-20024-A2 / 30XX	3,500	36	400				
RAD-2566-HL / 10XX	3,550	48	393				

CYLINDER MODEL NUMBER	DYNAMIC CAPACITY (Ibf.)	TRAVEL RATE IN/MIN. @ 1725 RPM	PAGE NUMBER
DD-3012-HD / 10XX	3,600	60	394
DD-256-HD / 10XX	3,600	72	392
DD-256-ML / 20XX	3,600	144	392
RAD-10086-A2 / 10XX	3,800	18	399
RAD-5066-HL / 10XX	4,000	48	397
DD-20024-HL / 20XX	4,000	72	400
DD-506-HD / 20XX	4,000	136	396
DD-2008-A2 / 70XX	4,250	108	400
RAD-10086-HL / 10XX	4,275	36	399
DD-2524-HD / 05XX	4,450	18	392
DD-2512-HD / 07XX	4,450	36	392
RAD-5062-A3 / 10XX	4,500	9	397
DD-1008-A2 / 50XX	4,500	108	398
DD-1008-HD / 20XX	4,600	102	398
DD-2008-A3 / 70XX	4,620	72	400
RAD-3066-HD / 05XX	4,775	20	395
RAD-3062-A4 / 07XX	4,925	6	395
RAD-2546-HD / 02XX	5,000	3	393
RAD-2546-A4 / 05XX	5,000	3	393
RAD-2562-HD / 03XX	5,000	6	393
RAD-2562-A4 / 05XX	5,000	6	393
RAD-2566-A4 / 07XX	5,000	12	393
RAD-5066-HD / 10XX	5,000	23	397
RAD-2566-ML / 05XX	5,000	24	393
RAD-2562-HL / 10XX	5,000	24	393
RAD-3062-HD / 03XX	5,250	10	395
DD-1008-HL / 50XX	5,400	216	398
DD-506-HD / 30XX	5,750	136	396
RAD-3022-A4 / 05XX	6,000	3	395
RAD-3022-HD / 02XX	6,000	5	395
RAD-3066-A4 / 10XX	6,000	12	395
RAD-10082-A2 / 10XX	6,275	9	399
DD-20024-HD / 20XX	7,000	36	400
DD-10024-HD / 15XX	7,150	34	398
RAD-5046-A3 / 10XX	7,200	4.5	397
DD-1008-HD / 30XX	7,500	102	398
RAD-10046-A2 / 10XX	7,800	6	399
RAD-5046-HL / 10XX	8,000	12	397
DD-2008-HL / 70XX	8,000	216	400
RAD-5046-HD / 10XX	9,000	6	397
RAD-5062-HD / 10XX	9,000	11	397
RAD-10046-HL / 10XX	9,750	12	399
RAD-10086-HD / 10XX	10,000	17	399
DD-20024-HD / 30XX	10,000	36	400
DD-2008-HD / 50XX	11,000	108	400
DD-1008-HD / 50XX	12,000	102	398
RAD-20048-A2 / 30XX	12,500	4.5	401
RAD-10082-HD / 10XX	15,000	9	399
DD-2008-HD / 70XX	16,600	108	400
RAD-10046-HD / 10XX	18,750	6	399
RAD-20088-A3 / 50XX	22,250	9	401
RAD-20088-HL / 50XX	30,000	27	401
RAD-20088-A2 / 70XX	31,000	13.5	401
RAD-20048-HL / 30XX	35,000	9	401
RAD-20088-HD / 30XX	35,000	13.5	401
RAD-20048-HD / 20XX	40,000	4.5	401

$X X=$ motor specification, see page 377

IN-LINE ENCODER IS INSTALLED BETWEEN THE MOTOR ADAPTER AND MOTOR .

For position sensing at the input shaft, the ActionJac ${ }^{\top M}$ in-line encoder option may be factory installed between the motor and motor adapter or Right-Angle Reducer. This low-cost option requires minimal space. When used with worm gear type cylinders, it leaves the extension shaft side of the cylinder free for clearance, for a rotary limit switch, or for coupling to another cylinder

The In-line encoder's quadrature output design allows detection of both speed and direction of shaft rotation.

The ActionJac ${ }^{\text {TM }}$ in-line encoder option mounts to a motor and therefore requires an optional motor mount or right-angle reducer.

Sensing speed range: $0-10,000 \mathrm{rpm}$
Pulse Output: $\quad 60$ pulses/revolution
Supply voltage: $\quad+12$ Volts DC $+/-5 \%$
Supply current: $\quad 60 \mathrm{~mA}$ typical, 115 mA maximum
Output drive capability: 250 mA per channel continuous
Maximum load: 50 ohms per channel
Encoder is face mounted between the motor and motor mount and will offset the length of the motor . 61 inches for NEMA 56 and 140 frames and 88 inches for NEMA 180 and 210 frames.

HOW TO ORDER AN IN-LINE ENCODER:

Specify the Cylinder reference number, using the system described on page 389.

EXAMPLE:
DD-1008-HD / 10BT-2 / 000-1 / CC / 24.0 / SE
" E " anywhere in this field indicates Encoder-

MOTOR MOUNTS WITH AND WITHOUT BRAKEMOTORS

ActionJac ${ }^{\text {TM }}$ motor mount assemblies are designed for standard motors and include jaw type couplings. These assemblies are stocked for DD-25, DD-50, DD-100 and DD-200 and are available for the cylinder sizes listed in the table. Non-standard motor mounts can be designed for special requirements including, special couplings, small NEMA frame motors, DIN standard motors, stepper motor and servomotor designs, contact Nook Industries for additional information.

STANDARD MOTOR MOUNT SIZES \& DIMENSIONS						
CYLINDER SERIES	NEMA FRAME SIZE	ORDER CODEWITHOUTMOTOR	DIMENSIONS			
			A	B	C	D
DD-5	42	X02	4.48	4.63	. 50	2.69
	48	X04	4.48	4.63	. 50	3.12
DD-10	56 C	X05	5.71	6.63	. 49	3.12
DD-25	56 C	X05	6.25	6.63	. 63	3.50
	140TC	X14	6.25	6.63	. 63	3.50
DD-50	56 C	X05	7.25	6.75	. 56	3.75
	140TC	X14	7.25	6.75	. 56	3.75
	180TC	X18	8.00	9.25	. 75	3.75
DD-100	56 C	X05	8.25	6.75	. 50	4.38
	140TC	X14	8.25	6.75	. 50	4.38
	180TC	X18	9.00	9.25	. 75	4.38
DD-200	56 C	X05	8.66	6.75	. 50	3.75
	140TC	X14	8.66	6.75	. 50	3.75
	180TC	X18	9.00	9.25	. 63	5.19
	213TC	X21	9.68	8.88	. 88	5.69

Actionjac ${ }^{\top \mathrm{M}}$ electric cylinders can be ordered with industrial quality induction motors. Motors with internally and externally wired brake motors are available. Brake motors utilize an integral, spring actuated brake. Standard motors are 3 -phase, $230-460$ VAC, $60 \mathrm{hz}, 1725 \mathrm{rpm}$. Single-phase motors are $115-130$ VAC, $60 \mathrm{hz}, 1725 \mathrm{rpm}$. All motors are rated for continuous duty. Specific duty motors, as wash down extended duty, may be supplied upon request.

See charts on page 377 for order codes.
CAUTION: Ball screw cylinders are self-lowering. A brake of sufficient torque is required to hold the load with a ball screw cylinder. Be sure to verify that the brakemotor selected has sufficient brake torque for your application.

MOTOR MOUNT POSITIONS

HOW TO ORDER A MOTOR ADAPTER WITH OR WITHOUT A BRAKEMOTOR EXAMPLE:
 DD-1008-HD / 10BT-1 / 000-1 / CC / 24.0 / S

ActionJac Electric Cylinders can be supplied with industrial quality brake motors. Brake motors include a spring actuated, electrically released braking mechanism which will hold a load when the power is off. In normal operation, power is applied and removed to the motor windings and brake release simultaneously.

If it is desired to operate the brake separately, as when used with a speed control, the brake needs to be wired
externally. Standard for Reliance motors, special order for Baldor motors.

Standard motors are: 3 phase, 208-230 / 460 VAC, 60 Hz .1725 rpm . Also available are single phase motors at: 115 / 230 VAC, 60 Hz .1725 rpm . All motors are rated for continuous duty. Note: for inverter duty motors or additional options, contact Nook Industries.

RELIANCE: EXTERNALLY WIRED BRAKE MOTOR ORDER CODE

$\begin{gathered} \text { MOTOR } \\ \text { HP } \end{gathered}$	STD. MOTOR 208-230/460 3PH	SINGLE PHASE 115/230 1PH	XT EXTRA TUFF 208-230/460 3РН	WASH DOWN MOTOR IP55 208-230/460 3P	EXPLOSION PROOF - DIVIIION 1 -CLASS 1,2 GROUP F \& G - 208/230/460涫
1/4	02RT	02RS	02RX*	02RW*	02RE*
1/3	03RT	03RS	03RX*	03RW*	03RE*
1/2	05RT	05RS	05RX*	05RW	05RE
3/4	07RT	07RS	07RX*	07RW	07RE
1	10RT	10RS	10RX*	10RW	10RE
1-1/2	15RT	-	15RX*	15RW	15RE
2	20RT	-	20RX*	20RW	20RE
3	30RT	-	30RX*	30RW*	30RE
5	50RT	-	50RX*	50RW*	50RE
7-1/2	75RT*	-	75RX*	75RW*	75RE*

*specify minimum quantity required

BRAKE MOTOR WIRING

A typical wiring drawing is shown here, for a three-phase brake motor. This example is for reference only, the correct wiring will vary for each application.

RIGHT-ANGLE REDUCER POSITIONS

| Position |
| :---: | :---: | :---: | :---: | :---: |
| 1 |

Download Accurate Moveable Assembly 3D Models and 2D Drawings For ActionJac ${ }^{\text {TM }}$ Worm Gear Screw Jacks and Electric Cylinders:

- Configure specific requirements for your worm gear screw jack or electric cylinder application in a simple interface, including motor adapter, right angle reducer, bellows boots and limit switch accessories.
- View complete assemblies on-line with zoom, pan and rotate capabilities.
- Download true assembly models with full range of motion in native AutoCAD ${ }^{\oplus}$, SolidWorks ${ }^{\circledR}$, Pro $/ E^{\oplus}$, CATIA $^{\oplus}$, ParaSolids ${ }^{\oplus}$, SAT $^{\oplus}$ and many other formats.
- Order complete jack assemblies with generated part number.

Actianiac
WORM GEAR SCREW JACKS \& ELECTRIC CYLINDERS

www.nookindustries.com

(499) 7033598

ILA SERIES MOTOR MOUNTS

ELECTRIC

GYLINDERS

Dimensions in mm Other IEC Motor Sizes available upon request.

MODEL	NEMA FRAME MOTOR SIZE	$ø$ A	øВ	øC	øD	øE	F	G
ILA-5	48	4.63	3.12	3.75	. 28	3.00	. 16	. 50
	48	4.63	3.12	3.75	. 28	3.00	. 16	. 50
ILA-10	56 C	6.75	3.50	5.88	. 41	4.50	. 16	. 50
ILA-25	56 C	6.75	3.75	5.88	. 41	4.50	. 16	. 50
	140TC	6.75	3.75	5.88	. 41	4.50	. 16	. 50
	180TC	9.25	3.75	7.25	. 56	8.50	. 28	. 75
ILA-100	56TC	6.75	4.38	5.88	. 41	4.50	. 16	. 50
	140TC	6.75	4.38	5.88	. 41	4.50	. 16	. 50
	180TC	9.25	4.38	7.25	. 56	8.50	. 28	. 75
ILA-200	180TC	9.25	5.19	7.25	. 56	8.50	. 28	. 75
	213TC	8.88	5.69	7.25	. 56	8.50	. 28	. 88

Dimensions in inches
Other NEMA and Custom Frame Motor Sizes available upon request.

MODEL	IEC FRAME MOTOR SIZE	\varnothing A	\varnothing В	ØC	\varnothing D	бE	F	G
ILA-5	56B5	120	64	100	8.5	80	3.5	7
	56B14	80	64	65	6	50	3.0	6
ILA-10	63B5	140	70	115	9	95	4	8
	63B14	90	70	75	6	60	3.5	8
	$71 \mathrm{B5}$	160	85	130	9	110	4.5	10
	71B14	105	85	85	7	70	4	10
ILA-25	71B5	160	85	130	9	110	4.5	10
	$71 \mathrm{B14}$	105	85	85	7	70	4	10
	80B5	200	85	165	11	130	4.5	12
	80B14	120	85	100	7	80	4	12
ILA-100	80B5	200	96	165	11	130	4.5	12
	80B14	120	96	100	7	80	4	12
	90B5	200	116	165	11	130	4.5	12
	$90 \mathrm{B14}$	140	116	115	9	95	4.5	12
	100B5	250	116	215	13	180	5	14
	100B14	160	116	130	9	110	5	14
ILA-200	100B5	250	134	215	13	180	5	14
	100B14	160	134	130	9	110	5	14

Every motorized Electric Cylinder must be controlled so that power to the motor is turned off and the brake engaged before the limits of mechanical travel are reached.

The ActionJac ${ }^{\top \mathrm{M}}$ rotary limit switch senses extension shaft rotation and provides switch contact closures that can be used to control motors.

This sturdy, durable assembly is available with two or four circuits or two circuits and a potentiometer. Each circuit has a separate rotating cam that actuates a high quality switch. The switch actuation may be individually and infinitely adjusted anywhere within the travel of the cylinder.

These assemblies contain gear reducers with ratios that vary according to the model and travel of the jack. Nook selects ratios that result in maximum cam rotation for best accuracy, repeatability and minimum hysteresis. In most cases, with full travel of the actuator, the cam will rotate $3 / 8$ to $7 / 8$ of a revolution to actuate a switch. In the event that the cam continues to rotate, the switch returns to its original state after approximately
25° of rotation, with no damage to the limit switch assembly.

A 2-circuit switch assembly is useful for limiting the maximum and minimum extension. A 4-circuit assembly gives the possibility of additional signals for other user purposes. The potentiometer version is used to provide an analog signal for sensing cylinder position.

Single Pole Double Throw (SPDT) switches are standard and Double Pole Double Throw (DPDT) switches are optional. These assemblies are dust protected and meet NEMA 4 and 5 standards for oil and water tightness.

An ActionJac ${ }^{\text {TM }}$ Rotary Limit Switch assembly is mounted to the extension shaft side of the ActionJac ${ }^{\text {TM }}$ Worm Gear Screw Cylinder opposite the motor.

A rotary limit switch is available for ActionJac ${ }^{\text {TM }}$ Electric Cylinder Series DD-25 and RAD-25 and larger. Most cylinder models have close and extended mounts for the switches to provide clearance around the switch housing. See the charts below for dimensions.

Switches are factory installed to assure proper assembly in the correct orientation for the specified mounting position. CAUTION: Limit switches are not adjusted at the factory. Switches should be set after installation.

HOW TO ORDER ROTARY LIMIT SWITCH:

SPECIFY: - 2-circuits, 4-circuits, or 2-circuits with potentiometer

- SPDT or DPDT
- Mounting Position

Insert the correct designation in the ActionJac ${ }^{\text {TM }}$ Electric Cylinder reference number (see page 000 for more information on jack reference numbers).

EXAMPLE: RAD-10086-HD / 10BT-1 / 2CA-4C / CC / 24.5 / S ■-Extension shaft designation

Examples of rotary limit switch designations:
2CA-4 = Rotary Limit Switch, 2-circuit, SPDT, position 4
4CE-1 = Rotary Limit Switch, 4-circuit, DPDT, position 1

ORDER CODE	NUMBER OF CIRCUITS	SWITCH TYPE	POTENTIOMETER
2CA	2	SPDT	NO
$2 C C$	2	DPDT	NO
4 CA	4	SPDT	NO
$4 C E$	4	DPDT	NO
PTA	2	SPDT	YES
PTC	2	DPDT	YES

PTA-8 = Rotary Limit Switch with potentiometer, 2 SPDT's, position 8
L_"dash" number designates mounting position (see following page)

IMPORTANT: These designation numbers are not complete part numbers. These assemblies contain gear reducers with ratios that vary according to the model and travel of the cylinder. If you are ordering a replacement switch assembly, complete information on the cylinder is required.

CIRCUITS	DIMENSIONS					
	A	B	C	D	E	F
2 CIRCUIT	2.46	5.25	6.24	7.62	$3 / 4-$ NPT	3.25
4 CIRCUIT OR 2 IRCUIT WITH POTENTIOMETER	2.46	5.25	8.24	9.62	1-NPT	3.88

SERIES	DIMENSION "H" CLOSE MOUNT	DIMENSION "H" EXT. MOUNT
DD \& RAD 25	2.75	3.56
DD \& RAD 30	2.75	3.56
DD \& RAD 50	3.56	4.56
DD \& RAD 100	3.88	5.56
DD \& RAD 200	4.41	5.81

ROTARY LIMIT SWITCH POSITIONS			
POSITION 1			$\begin{aligned} & \text { POSITION } \\ & 2 \end{aligned}$
POSITION 3			$\begin{gathered} \text { POSITION } \\ 4 \end{gathered}$
$\begin{gathered} \text { POSITION } \\ 5 \end{gathered}$			$\begin{gathered} \text { POSITION } \\ 6 \end{gathered}$
POSITION 7			$\begin{aligned} & \text { POSITION } \\ & 8 \end{aligned}$

WIRING DIAGRAMS:

ELECTRICAL RATINGS:

SWITCHES:

$\begin{array}{ll}\text { DC Current - } 115 \text { Volts } & \begin{array}{l}\text { SPDT, } .50 \mathrm{amps} \\ \text { DPDT, } .80 \mathrm{amps}\end{array} \\ \text { AC Current - } 115 \text { Volts } & \begin{array}{l}\text { SPDT, } 15 \mathrm{amps}\end{array} \\ & \text { DPDT, } 10 \mathrm{amps}\end{array}$

10-TURN POTENTIOMETER:

0-500 OHM, 2 Watt
S.P.D.T.

D.P.D.T.

MUST BE THE SAME POLARITY -
CAN BE THE OPPOSITE POLARITY

POTENTIOMETER

NOTE: While the 10-turn potentiometer is rated for 0-500 Ohms, as implemented in the rotary limit switch assembly, it can not and should not operate over its full range. Minimum and maximum resistance values can not be known until the cylinder is installed and final travel limit adjustments have been made, therefore, the device connected to the potentiometer should include provisions for trimming to compensate for these values.

The Rod-Type Limit Switch provides two SPDT switches used to limit the maximum and minimum cylinder extension. The switch assembly mounts to the cylinder tubes for convenient access and leaves the extension shaft free for other purposes. The simple design permits easy installation and maintenance. Independent adjustment allows for quick and easy fine tuning of the travel limits.

Every ActionJac ${ }^{\text {TM }}$ Electric Cylinder should be installed so that electrical power to the motor is turned off and the brake engaged before the travel limits are reached, or damage to the cylinder can result.

Minimum travel is $6^{\prime \prime}$ and maximum travel is $72^{\prime \prime}$ for all ACTIONJACTM ELECTRIC CYLINDERS equipped with rod-type limit switches.

HOW TO ORDER A ROD-TYPE LIMIT SWITCH:

Specify the Electric Cylinder reference number, using the system described on page 389.

EXAMPLE: DD-1008-HD / 10BT-2 / 000-1 / CC / 24.0 / SR
"R" anywhere in this field indicates Rod-Type Limit Switch Assembly

SWITch enclosure ratings	
NEMA	$1,2,3,3 \mathrm{R}, 4,5,6,12,13$
IEC	IP67

ROD-TYPE LIMIT SWITCH DIMENSIONS

SERIES	CLEARANCE RADIUS "R"
DD-5	4.00
DD-10	3.66
DD \& RAD-25	4.00
DD \& RAD-30	4.20
DD \& RAD-50	4.66
DD \& RAD-100	4.60
DD \& RAD-200	5.40

DD \& RAD ACCESSORIES

FEMALE ROD CLEVIS

FEMALE ROD CLEVIS

CYLINDER SERIES	PART NUMBER	DIMENSIONS						
		øA	B radius	C	D	E	F	G thread
SERIES 5	B9012-5	. $3145 / .3165$	19/64	13/64	11/32	$21 / 4$	13/16	5/16-24
SERIES 10	B-9012-8	.504/.502	1/2	1/2	3/4	11/2	3/4	7/16-20
SERIES 25 SERIES 30	B-9012-12	.752/.754	3/4	5/8	11/4	$21 / 8$	11/8	3/4-16
SERIES 50 SERIES 100	B-9012-16	1.002/1.004	1	3/4	11/2	2 15/16	15/8	1-14
SERIES 200	B-9012-22	1.377/1.379	13/8	1	2	$33 / 4$	2	11/4-12

Note: Rod Clevis' with swivel bearings can be supplied. Contact Nook Engineering

CLEVIS BRACKET

CLEVIS BRACKET FOR KNUCKLE															
CYLINDER SERIES	PART NUMBER	DIMENSIONS													
		A	B	C	D	E	F	G	H	øJ	K	L	øM	N	P
SERIES 5	B-9013-7	3/8	3/8	1	25°	1/2	5/8	1.75	$21 / 4$	17/64	3/8	15/32	.4395/.4415	1.75	$21 / 4$
SERIES 10	B-9013-8	1/2	1/2	11/2	25°	5/8	3/4	2.55	$31 / 2$	13/32	1/2	3/4	.504/.502	2.55	$31 / 2$
SERIES 25 SERIES 30	B-9013-12	3/4	5/8	17/8	25°	29/32	3/4	3.82	5	17/32	5/8	11/4	.752/.754	3.82	5
SERIES 50 SERIES 100	B-9013-16	1	3/4	21/4	25°	11/4	11/2	4.95	$61 / 2$	21/32	3/4	11/2	1.002/1.004	4.95	$61 / 2$
SERIES 200	B-9013-22	13/8	7/8	3	25°	121/32	2	5.73	71/2	21/32	1	2	1.377/1.379	5.73	$71 / 2$

PIVOT PIN

PIVOT PIN			
CYLINDER SERIES	PART NUMBER	DIMENSIONS	
		A	øB
SERIES 5	B9014-7	115/16	.4385/.4355
SERIES 10	B-9014-8	17/8	.501/.498
$\begin{array}{\|l\|l} & \text { SERIES } 25 \\ \text { SERIES } 30 \end{array}$	B-9014-12	2 5/8	.751/.748
$\begin{aligned} & \text { SERIES } 50 \\ & \text { SERIES } 100 \end{aligned}$	B-9014-16	$31 / 8$	1.001/0.999
SERIES 200	B-9014-22	$41 / 8$	1.376/1.373

STANDARD DD, RAD \& ILA MODELS						
CYLINDER SERIES	MODEL NUMBER	INPUT TURNS PER INCH OF TRAVEL	$\begin{gathered} \text { TORQUE AT } \\ \text { MOTOR INPUT } \\ \text { (IN.-LB.) PER LB. } \end{gathered}$	$\begin{gathered} \text { MAX } \\ \text { LOAD } \\ \text { LB. } \end{gathered}$	$\begin{gathered} \text { MAXX } \\ \text { HORSE } \\ \text { POWER } \end{gathered}$	$\begin{aligned} & \text { PAGE } \\ & \text { NUMBER } \end{aligned}$
5 SERIES		$\begin{gathered} 10 \\ 40 \\ 25 \\ 100 \\ 25 \\ 100 \\ 40 \\ 160 \\ 50 \\ 200 \end{gathered}$	$\begin{aligned} & 0.0242 \\ & 0.0102 \\ & 0.0095 \\ & 0.0000 \\ & 0.0021 \\ & 0.009 \\ & 0.017 \\ & 0.007 \\ & 0.014 \\ & 0.006 \end{aligned}$	$\begin{aligned} & 1,000 \\ & 1,000 \\ & 1,000 \\ & 1,000 \\ & 1,000 \\ & 1,000 \\ & 1,000 \\ & 1,000 \\ & 1,000 \\ & 1,000 \end{aligned}$	$\begin{aligned} & .33 \\ & .16 \\ & .33 \\ & .16 \\ & .33 \\ & .16 \\ & .33 \\ & .16 \\ & .33 \\ & .16 \end{aligned}$	$\begin{aligned} & 390 \\ & 390 \\ & 390 \\ & 390 \\ & 390 \\ & 390 \\ & 390 \\ & 390 \\ & 390 \\ & 390 \end{aligned}$
	ILA - 5 HL ILA - 5 HD ILAK - 5 HL ILAK - 5 HD	$\begin{aligned} & 2 \\ & 5 \\ & 2 \\ & 2 \\ & 5 \end{aligned}$	$\begin{aligned} & \hline 0.088 \\ & 0.035 \\ & 0.088 \\ & 0.035 \end{aligned}$	$\begin{aligned} & 1,000 \\ & 1,000 \\ & 1,000 \\ & 1,000 \\ & \hline \end{aligned}$	-	$\begin{aligned} & 403 \\ & 403 \\ & 403 \\ & 403 \end{aligned}$
10 SERIES	$\begin{gathered} \hline \text { DD }-105-\mathrm{HL} \\ \text { DD }-1020-\mathrm{HL} \\ \text { DD }-105-\mathrm{HD} \\ \text { DD }-1020-\mathrm{HD} \\ \text { DD }-105-\mathrm{A} \\ \text { DD }-1020-A 5 \end{gathered}$	$\begin{gathered} 10 \\ 40 \\ 25 \\ 100 \\ 25 \\ 100 \end{gathered}$	$\begin{aligned} & 0.0241 \\ & 0.0114 \\ & 0.0095 \\ & 0.0045 \\ & 0.0225 \\ & 0.0125 \end{aligned}$	2,000 2,000 2,000 2,000 2,000 2,000	$\begin{gathered} .5 \\ .25 \\ .5 \\ .25 \\ .5 \\ .25 \end{gathered}$	$\begin{aligned} & 391 \\ & 391 \\ & 391 \\ & 391 \\ & 391 \\ & 391 \end{aligned}$
	$\begin{aligned} & \text { ILA - } 10 \mathrm{HL} \\ & \text { ILA } 10 \mathrm{HD} \\ & \text { ILAK }-10 \mathrm{HL} \\ & \text { ILAK }-10 \mathrm{HD} \end{aligned}$	$\begin{aligned} & 2 \\ & 5 \\ & 2 \\ & 2 \\ & 5 \end{aligned}$	$\begin{aligned} & \hline 0.088 \\ & 0.035 \\ & 0.088 \\ & 0.035 \end{aligned}$	$\begin{aligned} & \hline 1,200 \\ & 2,200 \\ & 1,200 \\ & 2,200 \end{aligned}$	-	$\begin{aligned} & 404 \\ & 404 \\ & 404 \\ & 404 \end{aligned}$
25 SERIES	$\begin{aligned} & \hline D D-256-H L \\ & D D-2512-H L \\ & D D-256-M L \\ & D D-256-H D \\ & D D-2512-H D \\ & D D-2524-H D \\ & D D-256-A 2 \\ & D D-256-A 4 \\ & D D-2512-A 4 \\ & D D-2524-A 4 \end{aligned}$	$\begin{aligned} & \hline 6 \\ & 12 \\ & 12 \\ & 24 \\ & 48 \\ & 96 \\ & 12 \\ & 24 \\ & 48 \\ & 96 \end{aligned}$	$\begin{aligned} & 0.0404 \\ & 0.0244 \\ & 0.0201 \\ & 0.00102 \\ & 0.0061 \\ & 0.0042 \\ & 0.0334 \\ & 0.0252 \\ & 0.0148 \\ & 0.0106 \end{aligned}$	$\begin{aligned} & \hline 5,000 \\ & 5,000 \\ & 5,000 \\ & 5,000 \\ & 5,000 \\ & 5,000 \\ & 5,000 \\ & 5,000 \\ & 5,000 \\ & 5,000 \end{aligned}$	$\begin{gathered} \hline 2 \\ 1.5 \\ 2 \\ 2 \\ 2 \\ 1.5 \\ .5 \\ 2 \\ 2 \\ 2 \\ 1.5 \\ .5 \end{gathered}$	$\begin{aligned} & 392 \\ & 392 \\ & 392 \\ & 392 \\ & 392 \\ & 392 \\ & 392 \\ & 392 \\ & 392 \\ & 392 \end{aligned}$
	RAD - 2566 - HL RAD - 2562 - HL RAD - 2566 - ML RAD - 2566 - HD RAD-2562-HD RAD - 2522 - HD RAD - 2546 - HD RAD - 2566 - A4 RAD - 2562 - A4 RAD - 2522 - A4 RAD - 2546 - A4	$\begin{gathered} 36 \\ 72 \\ 72 \\ 144 \\ 288 \\ 576 \\ 576 \\ 144 \\ 288 \\ 576 \\ 576 \end{gathered}$	$\begin{aligned} & 0.0102 \\ & 0.0037 \\ & 0.0057 \\ & 0.0026 \\ & 0.0015 \\ & 0.0009 \\ & 0.0010 \\ & 0.0064 \\ & 0.0039 \\ & 0.0023 \\ & 0.0027 \end{aligned}$	$\begin{aligned} & 5,000 \\ & 5,000 \\ & 5,000 \\ & 5,000 \\ & 5,000 \\ & 5,000 \\ & 5,000 \\ & 5,000 \\ & 5,000 \\ & 5,000 \\ & 5,000 \end{aligned}$	$\begin{gathered} 1 \\ 1 \\ .5 \\ .5 \\ .33 \\ .33 \\ .33 \\ 1 \\ .75 \\ .5 \\ .33 \end{gathered}$	393 393 393 393 393 393 393 393 393 393 393
	ILA - 25 HL ILA - 25 ML ILA - 25 HD ILAK - 25 HL ILAK - 25 ML ILAK - 25 HD	$\begin{aligned} & 1 \\ & 2 \\ & 4 \\ & 1 \\ & 1 \\ & 2 \\ & 4 \end{aligned}$	0.177 0.088 0.035 0.177 0.088 0.035	$\begin{aligned} & \hline 2,200 \\ & 3,500 \\ & 3,500 \\ & 2,200 \\ & 3,500 \\ & 3,500 \end{aligned}$	二	$\begin{aligned} & 405 \\ & 405 \\ & 405 \\ & 405 \\ & 405 \\ & 405 \end{aligned}$
30 SERIES	$\begin{gathered} \hline \text { DD - } 306-H D \\ \text { DD }-3012-H D \\ \text { DD }-3024-H D \\ \text { DD }-306-A 4 \\ D D-3012-A 4 \\ D D-3024-A 4 \end{gathered}$	$\begin{gathered} 14.53 \\ 29.1 \\ 58.10 \\ 24 \\ 48 \\ 96 \end{gathered}$	$\begin{aligned} & 0.0167 \\ & 0.0169 \\ & 0.0070 \\ & 0.0271 \\ & 0.0165 \\ & 0.0118 \end{aligned}$	$\begin{aligned} & \hline 6,000 \\ & 6,000 \\ & 6,000 \\ & 6,000 \\ & 6,000 \\ & 6,000 \end{aligned}$	$\begin{gathered} 2 \\ 1.5 \\ .5 \\ 2 \\ 1.5 \\ .5 \end{gathered}$	$\begin{aligned} & 394 \\ & 394 \\ & 394 \\ & 394 \\ & 394 \\ & 394 \end{aligned}$
	RAD - $3066-H D$ RAD $-3062-H D$ RAD $-3022-H D$ RAD - $3046-H D$ RAD $-3066-A 4$ RAD $-302-A 4$ RAD $-3022-A 4$ RAD $-3046-A 4$	$\begin{gathered} \hline 87.18 \\ 174.36 \\ 348.2 \\ 348.96 \\ 144 \\ 288 \\ 576 \\ 576 \end{gathered}$	$\begin{aligned} & 0.0041 \\ & 0.0006 \\ & 0.0026 \\ & 0.0018 \\ & 0.0071 \\ & 0.0043 \\ & 0.0025 \\ & 0.0030 \end{aligned}$	$\begin{aligned} & \hline 6,000 \\ & 6,000 \\ & 6,000 \\ & 6,000 \\ & 6,000 \\ & 6,000 \\ & 6,000 \\ & 6,000 \end{aligned}$	$\begin{gathered} .5 \\ .33 \\ .25 \\ .25 \\ 1 \\ .75 \\ .5 \\ .5 \end{gathered}$	$\begin{aligned} & 395 \\ & 395 \\ & 395 \\ & 395 \\ & 395 \\ & 395 \\ & 395 \\ & 395 \end{aligned}$

STANDARD DD, RAD \& ILA MODELS

CYLINDER SERIES	MODEL NUMBER	INPUT TURNS PER INCH OF TRAVEL	TORQUE AT MOTOR INPUT (IN.-LB.) PER LB.	$\begin{aligned} & \text { MAX } \\ & \text { LOAD } \\ & \text { LB. } \end{aligned}$	MAX HORSE POWER	PAGE NUMBER
50 SERIES	$\begin{gathered} D D-506-\mathrm{SL} \\ D D-506-\mathrm{HL} \\ D D-5024-\mathrm{HL} \\ D D-506-H D \\ D D-5024-H D \\ D D-506-A 2 \\ D D-506-A 3 \\ D D-5024-A 3 \end{gathered}$	$\begin{gathered} 3.2 \\ 6 \\ 24 \\ 12.66 \\ 50.66 \\ 12 \\ 16 \\ 64 \end{gathered}$	0.0726 0.0387 0.0153 0.0183 0.0073 0.0437 0.0376 0.0144	$\begin{aligned} & 10,000 \\ & 10,000 \\ & 10,000 \\ & 10,000 \\ & 10,000 \\ & 10,000 \\ & 10,000 \\ & 10,000 \end{aligned}$	$\begin{gathered} 3 \\ 3 \\ .75 \\ 3 \\ .75 \\ 3 \\ 3 \\ .75 \end{gathered}$	$\begin{aligned} & 396 \\ & 396 \\ & 396 \\ & 396 \\ & 396 \\ & 396 \\ & 396 \\ & 396 \end{aligned}$
	$\begin{aligned} & \text { RAD - } 5066-\mathrm{HL} \\ & \text { RAD - } 5046-\mathrm{HL} \\ & \text { RAD }-5066-H D \\ & \text { RAD - } 5062-H D \\ & \text { RAD - } 5046-H D \\ & \text { RAD - } 5066-A 3 \\ & \text { RAD - } 5062-\text { A3 } \\ & \text { RAD }-5046-A 3 \end{aligned}$	$\begin{gathered} \hline 36 \\ 144 \\ 76 \\ 152 \\ 304 \\ 96 \\ 192 \\ 384 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0.0098 \\ & 0.0039 \\ & 0.0046 \\ & 0.0028 \\ & 0.0019 \\ & 0.0096 \\ & 0.0058 \\ & 0.0037 \end{aligned}$	$\begin{aligned} & \hline 10,000 \\ & 10,000 \\ & 10,000 \\ & 10,000 \\ & 10,000 \\ & 10,000 \\ & 10,000 \\ & 10,000 \end{aligned}$	$\begin{aligned} & \hline 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 397 \\ & 397 \\ & 397 \\ & 397 \\ & 397 \\ & 397 \\ & 397 \\ & 397 \end{aligned}$
100 SERIES	$\begin{gathered} \hline D D-1008-S L \\ D D-1008-H L \\ D D-10024-H L \\ D D-1008-H D \\ D D-10024-H D \\ D D-1008-A 2 \\ D D-10024-A 2 \\ D D-1008-A 4 \\ D D-10024-A 4 \end{gathered}$	$\begin{gathered} \hline 2.67 \\ 8 \\ 24 \\ 16.88 \\ 50.66 \\ 16 \\ 48 \\ 32 \\ 96 \\ \hline \end{gathered}$	0.0598 0.0319 0.0162 0.0151 0.0077 0.0377 0.0192 0.0314 0.0160	20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000 20,000	$\begin{gathered} \hline 5 \\ 5 \\ 1.5 \\ 5 \\ 1.5 \\ 5 \\ 1.5 \\ 5 \\ 1.5 \\ \hline \end{gathered}$	398 398 398 398 398 398 398 398 398
	$\begin{aligned} & \text { RAD - } 10086-\mathrm{HL} \\ & \text { RAD - } 10046-\mathrm{HL} \\ & \text { RAD - } 10086-H D \\ & \text { RAD - } 10082-\text { HD } \\ & \text { RAD }-10046-H D \\ & \text { RAD - } 10086-\text { A2 } \\ & \text { RAD - } 10082-\text { A2 } \\ & \text { RAD - } 10046-\text { A2 } \end{aligned}$	$\begin{gathered} \hline 48 \\ 144 \\ 101.28 \\ 202.58 \\ 303.96 \\ 96 \\ 192 \\ 288 \end{gathered}$	$\begin{aligned} & 0.0081 \\ & 0.0041 \\ & 0.0038 \\ & 0.0023 \\ & 0.0020 \\ & 0.0096 \\ & 0.0058 \\ & 0.0049 \end{aligned}$	$\begin{aligned} & 20,000 \\ & 20,000 \\ & 20,000 \\ & 20,000 \\ & 20,000 \\ & 20,000 \\ & 20,000 \\ & 20,000 \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	399 399 399 399 399 399 399 399
	ILA-100 SL ILA-100 HL ILA-100 HD ILAK-100 SL ILAK-100 HL ILAK-100 HD	$\begin{gathered} \hline .53 \\ 1 \\ 2.11 \\ .53 \\ 1 \\ 2.11 \end{gathered}$	$\begin{aligned} & \hline 0.332 \\ & 0.177 \\ & 0.084 \\ & 0.332 \\ & 0.177 \\ & 0.084 \end{aligned}$	2,500 4,600 9,000 2,500 4,600 9,000	- - - -	$\begin{aligned} & \hline 406 \\ & 406 \\ & 406 \\ & 406 \\ & 406 \\ & 406 \\ & \hline \end{aligned}$
200 SERIES	$\begin{gathered} D D-2008-H L \\ D D-20024-H L \\ D D-2008-H D \\ D D-20024-H D \\ D D-2008-A 2 \\ D D-20024-A 2 \\ D D-2008-A 3 \\ D D-20024-A 3 \end{gathered}$	$\begin{gathered} 8 \\ 24 \\ 16 \\ 48 \\ 16 \\ 48 \\ 24 \\ 72 \end{gathered}$	$\begin{aligned} & 0.0313 \\ & 0.0157 \\ & 0.0157 \\ & 0.0079 \\ & 0.0435 \\ & 0.0218 \\ & 0.0394 \\ & 0.0198 \end{aligned}$	$\begin{aligned} & 40,000 \\ & 40,000 \\ & 40,000 \\ & 40,000 \\ & 40,000 \\ & 40,000 \\ & 40,000 \\ & 40,000 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 2.5 \\ & 7.5 \\ & 2.5 \\ & 7.5 \\ & 2.5 \\ & 7.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 400 \\ & 400 \\ & 400 \\ & 400 \\ & 400 \\ & 400 \\ & 400 \\ & 400 \end{aligned}$
	RAD - 20088 - HL RAD - 20048 - HL RAD - 20088 - HD RAD - 20048 - HD RAD - 20088-A2 RAD - 20048-A2 RAD - 20088-A3 RAD - 20048-A3	$\begin{gathered} 64 \\ 192 \\ 128 \\ 384 \\ 128 \\ 384 \\ 192 \\ 576 \end{gathered}$	$\begin{aligned} & 0.0062 \\ & 0.0031 \\ & 0.0031 \\ & 0.0016 \\ & 0.0086 \\ & 0.0043 \\ & 0.0078 \\ & 0.0039 \end{aligned}$	$\begin{aligned} & 40,000 \\ & 40,000 \\ & 40,000 \\ & 40,000 \\ & 40,000 \\ & 40,000 \\ & 40,000 \\ & 40,000 \end{aligned}$	$\begin{gathered} 5 \\ 3 \\ 3 \\ 2 \\ 7.5 \\ 3 \\ 7.5 \\ 3 \end{gathered}$	$\begin{aligned} & 401 \\ & 401 \\ & 401 \\ & 401 \\ & 401 \\ & 401 \\ & 401 \\ & 401 \end{aligned}$
	ILA-200 HL ILA-200 HD ILAK-200 HL ILAK-200 HD	$\begin{aligned} & 1 \\ & 2 \\ & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 0.177 \\ & 0.088 \\ & 0.177 \\ & 0.088 \end{aligned}$	$\begin{aligned} & 11,000 \\ & 21,000 \\ & 11,000 \\ & 21,000 \end{aligned}$	- - -	$\begin{aligned} & 407 \\ & 407 \\ & 407 \\ & 407 \end{aligned}$

These definitions/descriptions are for the Product Specifications listed on the Electric Cylinder pages. Additional technical information on the preceding
pages is designed to help in selecting the cylinder that is best for the application. For additional assistance please contact Nook Industries.

DD \& RAD CYLINDERS

Model Type and Number See page 389 for reference number configuration information.

Travel Rate Measured in inches per minute at full dynamic load.

Dynamic Capacity Measured in pounds.

Rated Life Measured in millions of inches (ball screw models only). Based on the ball screw cylinder only dynamic capacity.

Standard Motor HP Rating See page 377 for additional motor information.

DD \& RAD CYLINDERS CONTINUED

Length Notation to determine standard extended and retracted length use the formula for each specific model/capacity. For special retracted lengths please contact Nook. WARNING! Any change to standard lengths may compromise the cylinder's compression load carrying capacity.

ILA CYLINDERS

Model Type and Number See page 402 for reference number configuration information.

ROD REACTION TORQUE = TORQUE PER LB. x LOAD NOTE: CYLINDER IS SELF-LOWERING. INPUT SHAFT MUST BE SECURED TO PREVENT ROTATION.

ACTIONJACTM ELECTRIC CYLINDERS

ActionJac™ Electric Cylinders are ruggedly designed and produced in standard models with thrust capacities from 500 lbs . to 40,000 lbs. Electric Cylinders are intended for use in industrial environments and feature ground and hard chrome plated actuator tubes with industrial enamel paint on exterior surfaces. Epoxy paint is available on request. Electric Cylinders can be supplied for outdoor applications.

These cylinders may be used individually or in multiple arrangements. Each ActionJac ${ }^{\text {TM }}$ Electric Cylinder is built to specification.

ACCESSORIES

Accessories such as motors, motor mounts, encoders, hand wheels, counters, couplings, miter gear boxes, boots, limit switches, clevises, clevis pins and clevis brackets are available.

RAD-2566-HL / 10BT-1 / 2CA-4C / CC / 24.5 / SER

SERIES 100 OR 200 MODEL
Refer to pages 357 to 359 for available models.

SSE-1 = Standard Shaft Extension, Position
SSE-2 = Standard Shaft Extension, Position 2
000-1 = Delete Shaft Extension, Position 1
000-2 = Delete Shaft Extension, Position 2

POSITION (see page 376) ORDER CODE

Input Shaft (CCW)
Positions 1, 3, 5, 7

Input Shaft (CW) Positions 2, 4, 6, 8

SHAFT ORDER CODE
CCW Position 1
CW Position 2

NO ACCESSO SSE-_ = Standard Shaft Extension, Posit 000-_ = Delete Shaft Extension, Position SPC-_ = Special Modified Shaft Extension	CCW Shaft CW Shaft
Motor Mounts Without Motor For DD, position 1 or 2 For RAD, position 1 through 8 see page 376 for standard motor mount order codes	Rotary Limit Switch (Position 1 C or E through 8 C or E) see page 380 and 381 for available rotary limit switches
Motor Mounts With Motors For DD, position 1 or 2 For RAD, position 1 through 8 see page 376 \& 377 for available motors EXAMPLE: 02BS-2 $=1 / 4 \mathrm{Hp}-1$ ph internally wired Brake Motor in Position 2	NOTE: A Limit Switch must include a close or extended mount. EXAMPLE: 4CA-6E $=4$ Circuit Limit Switch, SPDT with an extended mount in Position 6
Used on DD-10 to DD-200	Used on DD-25 to DD-200

SECOND SHAFT EXTENSION

Refer to First Shaft Extension Above.
NOTE: Both Shaft Extensions Must Be Specified
HOUSING CONFIGURATION
F = Standard Flange Base $\quad \mathbf{C}=$ Clevis Base
SCREW CONFIGURATION
$\mathbf{T}=$ Threaded End $\quad \mathbf{P}=$ Top Plate
C = Clevis End
$\mathbf{D}=$ Threaded rod end with female clevis installed

TRAVEL

Travel in inches.

MODIFIER LIST

E, B and/or R
$\mathbf{E}=$ In-Line Encoder (See page 375)
$\mathbf{B}=$ Bellows Boots (See pages 280-281)
$\mathbf{R}=$ Rod Type Limit Switch (See page 382)

Optional S or M Required

$\mathbf{E}=$ In-Line Encoder (See page 375)
$\mathbf{S}=$ Standard, no additional description required
$\mathbf{R}=$ Rod Type Limit Switch (See page 382)
$\mathbf{M}=$ Modified, additional description required

MOTOR MOUNT IS SHOWN
IN POSITION 1
Motor may be mounted
to either side of cylinder
(see page 376)

BOTTOM VIEW

LENGTH	FRAME SIZE	D1	D2
4.48	42	4.63	2.69
4.48	48	4.63	3.12

RETRACTED BALL SCREW LENGTH $=8.06+($ Travel $\times 1.25)$ RETRACTED ACME SCREW LENGTH $=7.38+$ (Travel $x 1.25$

DD-5 BALL SCREW MODELS						
MODEL NUMBER	DYNAMIC CAPACITY [lb.]	RATED Lin. $\mathbf{~ X ~ 1 0 ~}$ [6]	MAX. MOTOR HP RATING [ref.]	MAXIMUM ROD REACTION TORQUE [in.-lb.]	BASIC WEIGHT [lbs.]	
DD-55-HL / T03	1,000	6.9	.33	89	12	
DD-520-HL / T06	1,000	4.1	.16	89	12	
DD-55-HD / T03	1,000	.47	.33	35	12	
DD-520-HD / T06	1,000	.47	.16	35	12	

DD-5 ACME SCREW MODELS				
MODEL NUMBER	DYNAMIC CAPACITY [lbf.]	STD. MOTOR HP RATING [ref.]*	MAXIMUM ROD REACTION TORQUE [in.-lb.]	BASIC WEIGHT [lbs.]
DD-55-A5 / T03	1,000	.33	72	11
DD-55-A8 / T03	1,000	.33	58	11
DD-55-A10 / T03	1,000	.33	53	11
DD-520-A5 / T06	1,000	.16	72	11
DD-520-A8 / T06	1,000	.16	58	11
DD-520-A10 / T06	1,000	.16	53	11

*no brake

BALL SCREW MODELS

TOTAL WEIGHT $=(0.65)$ T + BASIC WEIGHT, where $T=$ TRAVEL IN INCHES

ACME SCREW MODELS:

TOTAL WEIGHT $=(0.64)$ T + BASIC
WEIGHT, where $T=$ TRAVEL IN INCHES

WARNING! UNITS ARE NOT TO BE USED AS PERSONNEL SUPPORT OR MOVEMENT. BALL SCREW MODELS ARE SELF-LOWERING.

Column Load

Life Expectancy SERIES DD-10

MOTOR MOUNT IS SHOWN
IN POSITION 1
Motor may be mounted
to either side of cylinder (see page 376)

\uparrow

NOTE: Adapter plated added for NEMA 56 motors only

DD-10 BALL SCREW MODELS									
MODEL NUMBER	TRAVEL RATE	DYNAMIC CAPACITY	RATED LIFE	STD. MOTOR HP RATING	STD. BRAKE TORQUE [ft.-lb.]	APPROX. STOPPING DISTANCE [in.]		$\begin{aligned} & \text { MAXIMUM ROD } \\ & \text { REACTION TORQUE } \\ & \text { [in.-lb.] } \\ & \hline \end{aligned}$	BASIC WEIGHT [lbs.]
	[in./min.]	[lb.]	[in. $\left.\mathrm{x} 10^{6}\right]$	[ref.]		No Load	Full Load		
DD-105-HL / 05XX	173	750	46	. 50	3	. 20	. 38	67	19
DD-1020-HL / 02XX	43	800	39	. 25	3	. 80	. 15	71	19
DD-105-HD / 05XX	69	1900	. 19	. 50	3	. 05	. 06	67	19
DD-1020-HD / 02XX	17	2000	. 17	. 25	3	. 02	. 02	71	19

DD-10 ACME SCREW MODELS							
MODEL NUMBER	TRAVEL RATE [in./min.]	DYNAMIC CAPACITY [lbf.]	STD. MOTOR HP RATING [ref.]	STD. BRAKE TORQUE [ft.-lb.]	APPROX. STOPPING DISTANCE [in.] NO LOAD	MAXIMUM ROD REACTION TORQUE [in.-lb.]	BASIC WEIGHT [lbs.]
DD-105-A5 / 05XX	69	850	. 50	3	. 08	79	15
DD-1020-A5 / 02XX	17	900	. 25	3	. 02	84	15

BALL SCREW MODELS:
TOTAL WEIGHT $=(0.77) T+$ BASIC WEIGHT, where $T=$ TRAVEL IN INCHES

ACME SCREW MODELS:
TOTAL WEIGHT $=(0.76)$ T + BASIC WEIGHT, where $T=$ TRAVEL IN INCHES

WARNING! UNITS ARE NOT TO BE USED AS PERSONNEL SUPPORT OR MOVEMENT. BALL SCREW MODELS ARE SELF-LOWERING.

MOTOR IS SHOWN N POSITION 1 Motor may be mounted o either side of cylinder (see page 376)

HP	DIA	FRAME SIZE
$1 / 4-2$	6.62	56 C

\uparrow
MOTOR DIMENSIONS

(For most up-to-date detailed motor dimensions, see www.nookindustries.com) | | | |
| :---: | :---: | :---: |
| HP | LENGTH | FRAME SIZE |
| $1 / 4-2$ | 6.25 | 56 C |

TOP VIEW

BOTTOM VIEW

DD-25 BALL SCREW MODELS									
MODEL NUMBER	$\begin{gathered} \text { TRAVEL } \\ \text { RATE } \\ \text { [in./min.] } \end{gathered}$	DYNAMIC CAPACITY [lb.]	$\begin{array}{\|c\|} \hline \text { RATED } \\ \text { LIFE } \\ {\left[\mathrm{in} . \mathrm{x} 10^{6}\right]} \end{array}$	STD. MOTOR HP RATING [ref.]	STD. BRAKETORQUE[ft.-lb.]	APPROX. STOPPING DISTANCE [in.]		MAXIMUM ROD REACTION TORQUE [in.-lb.]	BASIC WEIGHT [lbs.]
						No Load	Full Load		
DD-256-HL / 10XX	288	900	13.5	1	6	. 26	44	159	33
DD-256-HL / 20XX	288	1,800	1.69	2	10	43	74	318	33
DD-2512-HL / 10XX	144	1,500	2.91	1	6	25	. 35	265	33
DD-256-ML / 15XX	144	1,800	7	1.5	6	. 25	43	159	33
DD-256-ML / 20XX	144	3,600	. 9	2	10	. 21	42	318	33
DD-256-HD / 10XX	72	3,600	. 09	1	6	. 12	21	159	33
DD-256-HD / 07XX	72	2,000	4.1	. 75	6	. 06	. 09	89	33
DD-2512-HD / 07XX	36	4,450	. 38	. 75	6	. 03	. 04	197	33
DD-2512-HD / 05XX	36	2,000	4.1	5	3	. 04	. 06	89	33
DD-2524-HD / 05XX	18	4,450	. 38	5	3	. 02	. 03	197	33
DD-2524-HD / 03XX	18	1,500	9.9	. 33	3	. 02	. 02	66	33

DD-25 ACME SCREW MODELS							
MODEL NUMBER	$\begin{aligned} & \text { TRAVEL } \\ & \text { RATE } \\ & \text { [in./min.] } \end{aligned}$	DYNAMIC CAPACITY [lbf.]	STD. MOTOR HP RATING [ref.]	STD. BRAKE TORQUE [ft.-lb.]	APPROX. STOPPING DISTANCE [in.] NO LOAD	MAXIMUM ROD REACTION TORQUE [in.-lb.]	BASIC WEIGHT [lbs.]
DD-256-A2 / 15XX	144	1,725	1.5	6	. 30	240	30
DD-256-A4 / 15XX	72	2,280	1.5	6	. 15	239	30
DD-2512-A4 / 07XX	36	1,900	. 75	6	. 06	197	30
DD-2512-A4 / 10XX	36	2,500	1	6	. 06	263	30
DD-2524-A4 / 05XX	18	1,880	. 5	3	. 02	197	30

Specifications on these charts are for standard units only and may change for modified non-standard units!
For Actuators without motors see page 376 for product specifications

$$
\begin{array}{ll}
\text { BALL SCREW MODELS: } & \text { TOTAL WEIGHT }=(1.05) T+\text { BASIC WEIGHT, where } T=\text { TRAVEL IN INCHES } \\
\text { ACME SCREW MODELS: } & \text { TOTAL WEIGHT }=(1.0) T+\text { BASIC WEIGHT, where } T=\text { TRAVEL IN INCHES }
\end{array}
$$

> REDUCER IS SHOWN IN POSITION 1 Eight different positions are available.
> (See page 378)

RAD-25 BALL SCREW MODELS									
MODEL NUMBER	travel RATE [in./min.]	DYNAMIC CAPACITY [lb.]	$\begin{gathered} \hline \text { RATED } \\ \text { LIFE } \\ {\left[\text { in. } \times 10^{6}\right]} \end{gathered}$	STD. MOTOR HP RATING [ref.]	STD. BRAKE TORQUE [ft.-lb.]	APPROX. STOPPING DISTANCE [in.]		MAXIMUM ROD REACTION TORQUE [in.-lb.]	BASIC WEIGHT [lbs.]
						No Load	Full Load		
RAD-2566-HL / 10XX	48	3,550	22	1	6	. 08	. 08	628	46
RAD-2562-HL / 10XX	24	5,000	. 08	1	6	. 04	. 04	885	46
RAD-2566-ML / 05XX	24	5,000	. 33	. 5	3	. 014	. 014	443	46
RAD-2562-HD / 03XX	6	5,000	. 27	. 33	3	. 007	. 007	221	46
RAD-2546-HD / 03XX	3	5,000	27	25	3	. 003	. 003	221	46

RAD-25 ACME SCREW MODELS

MODEL NUMBER	TRAVEL RATE [in./min.]	DYNAMIC CAPACITY [lbf.]	STD. MOTOR HP RATING [ref.]	STD. BRAKE TORQUE [ft.-lb.]	APPROX. STOPPING DISTANCE [in.] NO LOAD	MAXIMUM ROD REACTION TORQUE [in.-lb.]	BASIC WEIGHT [lbs.]
RAD-2566-A4 / 07XX	12	5,000	.75	6	.02	52	
RAD-2562-A4 / 05XX	6	5,000	.5	3	44		
RAD-2546-A4 / 03XX	3	5,000	.33	3	505	4	

SERIES 25 DD \& RAD

ALL SCREW MODELS:

TOTAL WEIGHT $=(1.05) T+$ BASIC WEIGHT, where $\mathrm{T}=$ TRAVEL IN INCHES

ACME SCREW MODELS:
TOTAL WEIGHT $=$ (1.0)T + BASIC WEIGHT, where $T=$ TRAVEL IN INCHES

WARNING! UNITS ARE NOT TO BE USED AS PERSONNEL SUPPORT OR MOVEMENT. BALL SCREW MODELS ARE SELF-LOWERING.

MOTOR IS SHOWN
IN POSITION 1 Motor may be mounted to either side of cylinder (see page 376)

\section*{| HP | DIA | FRAME SIZE |
| :---: | :---: | :---: |
| $1 / 4-2$ | 6.62 | 56 C |}

THE DIMENSIONS ON THESE VIEWS ARE COMMON TO BOTH DD \& RAD MODELS
(For most up-to-date detailed motor dimensions, see www.nookindustries.com)

HP	LENGTH	FRAME SIZE
$1 / 4-2$	6.25	56 C

REDUCER IS SHOWN IN POSITION 1 Eight different positions are available. (See page 378)

RAD-30 BALL SCREW MODELS

MODEL NUMBER	TRAVEL RATE [in./min.]	DYNAMIC CAPACITY [lb.]	$\begin{gathered} \text { RATED } \\ \text { LIFE } \\ {\left[\mathrm{in} . \times 10^{6}\right]} \end{gathered}$	STD. MOTOR HP RATING [ref.]	STD. BRAKE TORQUE [ft.-lb.]	APPROX. STOPPING DISTANCE [in.]		MAXIMUM ROD REACTION TORQUE [in.-lb.]	BASIC WEIGHT [lbs.]
						No Load	Full Load		
RAD-3066-HD / 05XX	20	4,775	. 54	. 5	3	. 02	. 02	349	51
RAD-3062-HD / 03XX	10	5,250	. 40	. 33	3	. 012	. 012	383	51
RAD-3022-HD / 03XX	5	6,000	. 27	. 33	3	. 006	. 006	439	51

RAD-30 ACME SCREW MODELS

MODEL NUMBER	TRAVEL RATE [in./min.]	DYNAMIC CAPACITY [lbf.]	STD. MOTOR HP RATING [ref.]	STD. BRAKE TORQUE [ft.-Ib.]	APPROX. STOPPING DISTANCE [in.] NO LOAD	MAXIMUM ROD REACTION TORQUE [in.-Ib.]	BASIC WEIGHT [Ibs.]
RAD-3066-A4 / 10XX	12	6,000	1	6	.02	702	47
RAD-3062-A4 / 07XX	6	4,925	.75	3	.005	575	47
RAD-3022-A4 / 05XX	3	6,000	.5	3	.004	702	47

SERIES 30 DD \& RAD

BALL SCREW MODELS:
TOTAL WEIGHT = (1.31)T + BASIC
WEIGHT, where $T=$ TRAVEL IN INCHES
ACME SCREW MODELS:
TOTAL WEIGHT = (1.38)T + BASIC WEIGHT, where $T=$ TRAVEL IN INCHES

WARNING! UNITS ARE NOT TO BE USED AS PERSONNEL SUPPORT OR MOVEMENT. BALL SCREW MODELS ARE SELF-LOWERING.

DD-50 BALL SCREW MODELS									
MODEL NUMBER	$\begin{gathered} \text { TRAVEL } \\ \text { RATE } \\ \text { [in./min.] } \end{gathered}$	DYNAMIC CAPACITY [lb.]	$\begin{gathered} \hline \text { RATED } \\ \text { LIFE } \\ \text { [in. } \left.\times 10^{6}\right] \end{gathered}$	STD. MOTOR HP RATING [ref.]	$\begin{gathered} \hline \text { STD. BRAKE } \\ \text { TORQUE } \\ \text { [ft.-lb.] } \end{gathered}$	APPROX. STOPPING DISTANCE [in.]		$\begin{aligned} & \text { MAXIMUM ROD } \\ & \text { REACTION TORQUE } \\ & \text { [in.-lb.] } \end{aligned}$	BASIC WEIGHT $[l \mathrm{lbs}$. [lbs.]
						No Load	Full Load		
DD-506-SL / 20XX	539	950	110	2	10	. 8	1.7	501	63
DD-506-HL / 20XX	288	2,000	73	2	10	. 43	1.07	320	63
DD-506-HL / 30XX	288	2,500	21	3	15	. 74	1.48	480	63
DD-506-HD / 20XX	136	4,000	18	2	10	. 20	. 46	320	63
DD-506-HD / 30XX	136	5,750	5.4	3	15	. 35	. 66	480	63
DD-5024-HD / 07XX	34	3,000	19	0.75	6	. 03	. 04	314	63

DD-50 ACME SCREW MODELS

MODEL NUMBER	TRAVEL RATE [in./min.]	DYNAMIC CAPACITY [lbf.]	STD. MOTOR HP RATING [ref.]	STD. BRAKE TORQUE [ft.-Ib.]	APPROX. STOPPING DISTANCE [in.] NO LOAD	MAXIMUM ROD REACTION TORQUE [in.-Ib.]	BASIC WEIGHT [Ibs.]
DD-506-A2 / 20XX	144	1,900	2	10	.21	476	53
DD-506-A3/10XX	108	1,000	1	6	.19	143	53
DD-506-A3 / 20XX	108	2,200	2	10	.16	288	53
DD-506-A3 / 30XX	108	2,900	3	15	.28	432	53
DD-508-A4 / 20XX	54	3,000	3	15	.08	455	53
DD-5024-A3/07XX	27	1,900	.75	6	.02	285	53

Specifications on these charts are for standard units only and may change for modified non-standard units!
For Actuators without motors see page 376 for product specifications

$$
\begin{array}{ll}
\text { BALL SCREW MODELS: } & \text { TOTAL WEIGHT }=(1.92) \mathrm{T}+\text { BASIC WEIGHT, where } \mathrm{T}=\text { TRAVEL IN INCHES } \\
\text { ACME SCREW MODELS: } & \text { TOTAL WEIGHT }=(1.87) \mathrm{T}+\text { BASIC WEIGHT, where } T=\text { TRAVEL IN INCHES }
\end{array}
$$

WARNING! UNITS ARE NOT TO BE USED AS PERSONNEL SUPPORT OR MOVEMENT. BALL SCREW MODELS ARE SELF-LOWERING.

REDUCER IS SHOWN IN POSITION 1 Eight different positions are available. (See page 378)

RAD-50 BALL SCREW MODELS									
MODEL NUMBER	$\begin{array}{\|c} \hline \text { TRAVEL } \\ \text { RATE } \\ \text { [in./min.] } \end{array}$	DYNAMIC CAPACITY [lb.]	$\begin{gathered} \hline \text { RATED } \\ \text { LIFE } \\ {\left[\text { in. } \times 10^{6}\right]} \end{gathered}$	STD. MOTOR HP RATING [ref.]	$\begin{gathered} \hline \text { STD. BRAKE } \\ \text { TORQUE } \\ \text { [ft.-lb.] } \\ \hline \end{gathered}$	APPROX. STOPPING DISTANCE [in.]		MAXIMUM ROD REACTION TORQUE [in.-Ib.]	BASIC WEIGHT [lbs.]
						No Load	Full Load		
RAD-5066-HL / 10XX	48	4,000	22	1	6	. 08	. 08	478	77
RAD-5066-HD / 10XX	23	5,000	5.6	1	6	. 04	. 04	475	77
RAD-5046-HL / 10XX	12	8,000	1.5	1	6	. 02	. 02	1,179	77
RAD-5062-HD / 10XX	11	9,000	1.4	1	6	. 02	. 02	754	77
RAD-5046-HD / 10XX	6	9,000	1.4	1	6	. 02	. 01	754	77

RAD-50 ACME SCREW MODELS							
MODEL NUMBER	TRAVEL RATE [in./min.]	DYNAMIC CAPACITY [lbf.]	STD. MOTOR HP RATING [ref.]	STD. BRAKE TORQUE [ft.-lb.]	APPROX. STOPPING DISTANCE [in.] NO LOAD	MAXIMUM ROD REACTION TORQUE [in.-Ib.]	BASIC WEIGHT [lbs.]
RAD-5066-A3 /10XX	18	2,700	1	6	.03	402	66
RAD-5062-A3 /10XX	9	4,500	1	6	.02	670	66
RAD-5046-A3 /10XX	4.5	7,200	1	6	.01	1,073	66

SERIES 50 DD \& RAD

Life Expectancy

BALL SCREW MODELS:

TOTAL WEIGHT $=(1.92)$ T + BASIC WEIGHT, where $T=$ TRAVEL IN INCHES

ACME SCREW MODELS:
TOTAL WEIGHT $=(1.87)$ T + BASIC WEIGHT, where $T=$ TRAVEL IN INCHES

WARNING! UNITS ARE NOT TO BE USED AS PERSONNEL SUPPORT OR MOVEMENT. BALL SCREW MODELS ARE SELF-LOWERING.
worass spom IN POSITION 1 Motor may be mounted to either side of cylinder (see page 376)

HP	DIA	FRAME SIZE
$1-2$	6.75	56 C
$3-5$	9.25	184 TC

TOP VIEW

BOTTOM VIEW

DD-100 BALL SCREW MODELS

MODEL NUMBER	TRAVEL RATE [in./min.]	DYNAMIC CAPACITY [lb.]	$\begin{gathered} \text { RATED } \\ \text { LIFE } \\ {\left[\text { in. } \times 0^{6}\right]} \end{gathered}$	STD. MOTOR HP RATING [ref.]	STD. BRAKE TORQUE [ft.-lb.]	APPROX. STOPPING DISTANCE [in.]		MAXIMUM ROD REACTION TORQUE [in.-Ib.]	BASIC WEIGHT [lbs.]
						No Load	Full Load		
DD-1008-SL / 20XX	404	1,150	240	2	10	. 6	. 9	385	80
DD-1008-HL / 20XX	216	2,175	42	2	10	. 3	. 5	385	80
DD-1008-HL / 50XX	216	5,400	2.7	5	15	. 7	1.3	956	80
DD-1008-HD / 20XX	102	4,600	10.4	2	10	. 2	. 2	385	80
DD-1008-HD / 30XX	102	7,500	2.4	3	15	. 3	. 4	628	80
DD-1008-HD / 50XX	102	12,000	. 59	5	15	. 3	. 7	1005	80
DD-10024-HL / 15XX	72	2,700	22	1.5	6	. 15	. 16	478	80
DD-10024-HD / 15XX	34	7,150	2.8	1.5	6	. 07	. 09	598	80

DD-100 ACME SCREW MODELS

MODEL NUMBER	TRAVEL RATE [in./min.]	DYNAMIC CAPACITY [lbf.]	STD. MOTOR HP RATING [ref.]	STD. BRAKE TORQUE [ft.-lb.]	APPROX. STOPPING DISTANCE [in.] NO LOAD	MAXIMUM ROD REACTION TORQUE [in.-lb.]	BASIC WEIGHT [Ibs.]
DD-1008-A2 / 20XX	108	2,000	2	10	.6	398	77
DD-1008-A2 / 30XX	108	3,000	3	15	.3	597	77
DD-1008-A2 / 50XX	108	4,500	5	15	.7	896	77
DD-1008-A4 / 20XX	54	2,000	2	10	.2	36	77
DD-10024-A2 / 15XX	36	2,000	1.5	6	3	37	

Specifications on these charts are for standard units only and may change for modified non-standard units!
For Actuators without motors see page 376 for product specifications
$\begin{array}{ll}\text { BALL SCREW MODELS: } & \text { TOTAL WEIGHT }=(1.92) T+\text { BASIC WEIGHT, where } T=\text { TRAVEL IN INCHES } \\ \text { ACME SCREW MODELS: } & \text { TOTAL WEIGHT }=(2.5) T+\text { BASIC WEIGHT, where } T=\text { TRAVEL IN INCHES }\end{array}$
WARNING! UNITS ARE NOT TO BE USED AS PERSONNEL SUPPORT OR MOVEMENT. BALL SCREW MODELS ARE SELF-LOWERING.

RAD-100 ACME SCREW MODELS							
MODEL NUMBER	TRAVEL RATE [in./min.]	DYNAMIC CAPACITY [lbf.]	STD. MOTOR HP RATING [ref.]	STD. BRAKE TORQUE [ft.-lb.]	APPROX. STOPPING DISTANCE [in.] NO LOAD.	MAXIMUM ROD REACTION TORQUE [in.-lb.]	BASIC WEIGHT [Ibs.]
RAD-10086-A2 / 10XX	18	3,800	1	6	.06	756	89
RAD-10082-A2 / 10XX	9	6,275	1	6	.07	1,249	89
RAD-10046-A2 /10XX	6	7,800	1	6	.03	1,552	89

SERIES 100 DD \& RAD

BALL SCREW MODELS:

TOTAL WEIGHT $=(1.92)$ T + BASIC WEIGHT, where $T=$ TRAVEL IN INCHES

ACME SCREW MODELS:
TOTAL WEIGHT $=$ (2.5)T + BASIC WEIGHT, where $T=$ TRAVEL IN INCHES

WARNING! UNITS ARE NOT TO BE USED AS PERSONNEL SUPPORT OR MOVEMENT. BALL SCREW MODELS ARE SELF-LOWERING.

MOTOR IS SHOWN IN POSITION 1 Motor may be mounted to either side of cylinder (see page 376

HP	DIA	FRAME SIZE
2	6.75	56C
$3-5$	9.25	184 TC
7.5	9.25	213 TC

TOP VIEW

BOTTOM VIEW

THE DIMENSIONS ON THESE VIEWS ARE COMMON TO BOTH DD \& RAD MODELS MOTOR DIMENSIONS
(For most up-to-date detailed motor dimensions, see www.nookindustries.com)

HP	LENGTH	FRAME SIZE
2	8.65	56 C
$3-5$	9.00	184 TC
7.5	9.65	213 TC

DD-200 BALL SCREW MODELS									
MODEL NUMBER	TRAVEL RATE [in./min.]	DYNAMIC CAPACITY [lb.]	$\begin{gathered} \hline \text { RATED } \\ \text { LIFE } \\ {\left[\text { in. } \mathrm{x} 10^{6}\right]} \end{gathered}$	STD. MOTOR HP RATING [ref.]	STD. BRAKE TORQUE [ft.-lb.]	APPROX. STOPPING DISTANCE [in.]		MAXIMUM ROD REACTION TORQUE [in.-Ib.]	BASIC WEIGHT [lbs.]
						No Load	Full Load		
DD-2008-HL / 70XX	216	8,000	36	7.5	25	. 4	. 6	1,416	154
DD-2008-HD / 70XX	108	16,600	2.1	7.5	25	. 2	. 3	1,469	154
DD-2008-HD / 50XX	108	11,000	7.3	5	15	. 4	. 7	979	154
DD-20024-HL / 20XX	72	4,000	292	2	10	. 1	. 1	708	154
DD-20024-HD / 20XX	36	7,000	28	2	10	. 1	. 1	620	154
DD-20024-HD / 30XX	36	10,000	9.7	3	15	. 1	. 1	885	154

DD-2O0 ACME SCREW MODELS							
MODEL NUMBER	TRAVEL RATE [in./min.]	DYNAMIC CAPACITY [lbf.]	STD. MOTOR HP RATING [ref.]	STD. BRAKE TORQUE [ft.-lb.]	APPROX. STOPPING DISTANCE [in.] NO LOAD	MAXIMUM ROD REACTION TORQUE [in.-Ib.]	BASIC WEIGHT [Ibs.]
DD-2008-A2 / 70XX	108	4,250	7.5	15	.4	995	138
DD-2008-A3 /70XX	72	4,620	7.5	15	.24	979	138
DD-20024-A2 / 20XX	36	2,500	2	10	.05	585	138
DD-20024-A2 /30XX	36	3,500	3	15	.09	819	138

Specifications on these charts are for standard units only and may change for modified non-standard units!
For Actuators without motors see page 376 for product specifications

$$
\begin{array}{ll}
\text { BALL SCREW MODELS: } & \text { TOTAL WEIGHT }=(3.31) \mathrm{T}+\text { BASIC WEIGHT, where } T=\text { TRAVEL IN INCHES } \\
\text { ACME SCREW MODELS: } & \text { TOTAL WEIGHT }=(3.6) T+\text { BASIC WEIGHT, where } T=\text { TRAVEL IN INCHES }
\end{array}
$$

WARNING! UNITS ARE NOT TO BE USED AS PERSONNEL SUPPORT OR MOVEMENT. BALL SCREW MODELS ARE SELF-LOWERING.

REDUCER IS SHOWN IN POSITION 1 Eight different positions are available. (See page 378)

RAD-200 BALL SCREW MODELS									
MODEL NUMBER	TRAVEL RATE [in./min.]	DYNAMIC CAPACITY [lb.]	$\left.\begin{array}{c} \text { RATED } \\ \text { LIFE } \\ \text { [in. } \times 10^{6]} \end{array}\right]$	STD. MOTOR HP RATING [ref.]	STD. BRAKETORQUE[ft.-lb.]	APPROX. STOPPING DISTANCE [in.]		MAXIMUM ROD REACTION TORQUE [in.-lb.]	BASIC WEIGHT [lbs.]
						No Load	Full Load		
RAD-20088-HL / 50XX	27	30,000	. 69	5	15	. 09	. 09	5,300	202
RAD-20088-HD / 30XX	13.5	35,000	. 23	3	15	. 03	. 03	3,098	202
RAD-20048-HL / 30XX	9	35,000	. 44	3	15	. 02	. 02	6,195	202
RAD-20048-HD / 20XX	4.5	40,000	. 15	2	10	. 01	. 01	3,540	202

RAD-200 ACME SCREW MODELS							
MODEL NUMBER	TRAVEL RATE [in./min.]	DYNAMIC CAPACITY [lbf.]	STD. MOTOR HP RATING [ref.]	STD. BRAKE TORQUE [ft.-lb.]	APPROX. STOPPING DISTANCE [in.] NO LOAD	MAXIMUM ROD REACTION TORQUE [in.-Ib.]	BASIC WEIGHT [lbs.]
RAD-20088-A2 / 70XX	13.5	31,000	7.5	25	.03	7,254	187
RAD-20088-A3 / 50XX	9	22,500	5	15	.03	4,770	187
RAD-20048-A2 / 30XX	4.5	12,500	3	15	.01	2,925	187

SERIES 200 DD \& RAD

BALL SCREW MODELS:
TOTAL WEIGHT =
(3.31)T + BASIC WEIGHT,
where $T=$ TRAVEL IN INCHES
ACME SCREW MODELS:
TOTAL WEIGHT =
(3.6)T + BASIC WEIGHT,
where $T=$ TRAVEL IN INCHES
WARNING! UNITS ARE NOT TO BE USED AS PERSONNEL SUPPORT OR MOVEMENT. BALL SCREW MODELS ARE SELF-LOWERING.
 SERIES I A-5 \& T AK-5

* DIMENSION BASED ON MOTOR MOUNT, contact factory with your specific requirements.

ILA-5 \& ILAK-5 BALL SCREW MODELS

MODEL NUMBER	$\begin{aligned} & \text { MAXIMUM } \\ & \text { LOAD } \\ & \text { [lb.] } \end{aligned}$	MAX. INPUT TORQUE [in.-lb.]	MAX. TRAVELRATE[in./min.]	BALL SCREW	TORQUE PER LB. [in.-Ib.]	DIMENSIONS	
						A	B
ILA-5 HL	1,000	88	2,377	0631-0500 SRT	0.088	2.25	1.38
ILA-5-HD	1,000	35	951	0631-0200 SRT	0.035	2.25	1.38
ILAK-5 HL (Keyed)	1,000	88	2,377	0631-0500 SRT	0.088	3.50	1.10
ILAK-5 HD (Keyed)	1,000	35	951	0631-0200 SRT	0.035	3.50	1.10

ROD REACTION TORQUE = TORQUE PER LB. x LOAD
NOTE: CYLINDER IS SELF-LOWERING. INPUT SHAFT MUST BE SECURED TO PREVENT ROTATION.

SERIES ILA-5 \& ILAK-5

* DIMENSION BASED ON MOTOR MOUNT, contact factory with your specific requirements.

ILA-10 \& ILAK-10 BALL SCREW MODELS							
MODEL NUMBER	MAXIMUM LOAD [lb.]	MAX. INPUT TORQUE [in.-lb.]	MAX. TRAVELRATE[in.-min.]	BALL SCREW	TORQUE PER LB. [in.-lb.]	DIMENSIONS	
						A	B
ILA-10 HL	1,200	105	2,000	0750-0500 SRT	0.088	2.50	1.44
ILA-10-HD	2,200	77	800	0750-0200 SRT	0.035	2.50	1.44
ILAK-10 HL (Keyed)	1,200	105	2,000	0750-0500 SRT	0.088	4.00	1.25
ILAK-10 HD (Keyed)	2,200	77	800	0750-0200 SRT	0.035	4.00	1.25

ROD REACTION TORQUE $=$ TORQUE PER LB. x LOAD

* DIMENSION BASED ON MOTOR MOUNT, contact factory with your specific requirements.

ILA-25 \& ILAK-25 BALL SCREW MODELS

MODEL NUMBER	MAXIMUM LOAD [Ib.]	MAX. INPUT TORQUE [in.-Ib.]	MAX. TRAVEL RATE [in./min.]	BALL SCREW	TORQUE PER LB. [in.-lb.]	DIMENSIONS	
ILA-25 HL	2,200	390	3,000	$1000-1000$ SRT	0.177	3.00	1.50
ILA-25-ML	3,500	308	1,500	$1000-0500$ SRT	0.088	3.00	1.50
ILA-25-HD	3,500	154	750	$1000-0250$ SRT	0.035	3.00	1.50
ILAK-25 HL (Keyed)	2,200	390	3,000	$1000-1000$ SRT	0.177	4.00	1.25
ILAK-25-ML (Keyed)	3,500	308	1,500	$1000-0500$ SRT	0.088	4.00	1.25
ILAK-25-HD (Keyed)	3,500	154	750	$1000-0250$ SRT	0.035	4.00	1.25

ROD REACTION TORQUE = TORQUE PER LB. x LOAD

SERIES ILA-25 \& ILAK-25

* DIMENSION BASED ON MOTOR MOUNT, contact factory with your specific requirements.

ILA-100 \& ILAK-100 BALL SCREW MODELS									
MODEL NUMBER	MAXIMUM LOAD [lb.]	MAX. INPUT TORQUE [in.-lb.]	$\begin{gathered} \hline \text { MAX. TRAVEL } \\ \text { RATE } \\ \text { [in.-min.] } \end{gathered}$	BALL SCREW	TORQUE PER LB. [in.-lb.]	DIMENSIONS			
						A	B	C	D
ILA-100 SL	2,500	830	3,750	1500-1875 SRT	0.332	4.00	2.50	16.00	19.00
ILA-100-HL	4,600	814	2,000	1500-1000 SRT	0.177	4.00	2.50	14.18	17.14
ILA-100-HD	9,000	756	946	1500-0473 SRT	0.084	4.00	2.50	14.18	17.14
ILAK-100 SL (Keyed)	2,500	830	3,750	1500-1875 SRT	0.332	6.50	2.00	17.50	20.50
ILAK-100-HL (Keyed)	4,600	814	2,000	1500-1000 SRT	0.177	6.50	2.00	14.18	17.14
ILAK-100-HD (Keyed)	9,000	756	946	1500-0473 SRT	0.084	6.50	2.00	14.18	17.14

ROD REACTION TORQUE = TORQUE PER LB. x LOAD

NOTE: CYLINDER IS SELF-LOWERING. INPUT SHAFT MUST BE SECURED TO PREVENT ROTATION.

SERIES ILA-100 \& ILAK-100

* DIMENSION BASED ON MOTOR MOUNT, contact factory with your specific requirements.

ILA-200 \& ILAK-200 BALL SCREW MODELS

MODEL NUMBER	MAXIMUM LOAD [Ib.]	MAX. INPUT TORQUE [in.-Ib.]	MAX. TRAVEL RATE [in.-min.]	BALL SCREW	TORQUE PER LB. [in.-Ib.]	DIMENSIONS
	11,000	1,947	1,333	$2250-1000$ SRT	0.177	A
ILA-200 HL	21,000	1,848	667	$2250-0500$ SRT	0.088	5.25
ILA-200-HD	1,947	1,337	$2250-1000$ SRT	0.177	5.25	
ILAK-200 HL (Keyed)	11,000	1,848	667	$2250-0500$ SRT	0.088	7.50
ILAK-200 HD (Keyed)	21,000		7.50			

ROD REACTION TORQUE = TORQUE PER LB. x LOAD
NOTE: CYLINDER IS SELF-LOWERING. INPUT SHAFT MUST BE SECURED TO PREVENT ROTATION.

SERIES ILA-200 \& ILAK-200

